The hydrophobic effect plays a key role in many chemical and biological processes, including protein folding. Nonetheless, a comprehensive picture of the effect of temperature on hydrophobic hydration and protein denaturation remains elusive. Here, we study the effect of temperature on the hydration of model hydrophobic and amphiphilic solutes, through molecular dynamics, aiming at getting insight on the singular behavior of water, concerning the zero-entropy temperature, , and entropy convergence, , also observed for some proteins, upon denaturation. We show that, similar to hydrocarbons, polar amphiphilic solutes exhibit a , although strongly dependent on solute-water interactions, opposite to hydrocarbons. Further, the temperature dependence of the hydration entropy, normalized by the solvent accessible surface area, is shown to be nearly solute size independent for hydrophobic but not for amphiphilic solutes, for similar reasons. These results are further discussed in the light of information theory (IT) and the structure of water around hydrophobic groups. The latter shows that the tetrahedral enhancement of some water molecules around hydrophobic groups, associated with the reduction of water defects, leads to the strengthening of the weakest hydrogen bonds, relative to bulk water. In addition, a larger tetrahedrality is found in low density water populations, demonstrating that pure water has encoded structural information, similar to that associated with hydrophobic hydration. The reversal of the hydration entropy dependence on the solute size, above , is also analyzed and shown to be associated with a greater loss of water molecules exhibiting enhanced orientational order, in the coordination sphere of large solutes. Finally, the source of the differences between Kauzmann's "hydrocarbon model" on protein denaturation and hydrophobic hydration is discussed, with relatively large amphiphilic hydrocarbons seemingly displaying a more similar behavior to some globular proteins than aliphatic hydrocarbons.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpcb.0c08055 | DOI Listing |
Water Res
December 2024
College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, PR China. Electronic address:
Membrane technology is an important component of resource recovery. Covalent organic frameworks (COFs) with inherent long-range ordered structure and permanent porosity are ideal materials for fabricating advanced membrane. Zwitterionic COFs have unique features beyond single ionic COFs containing anions or cations.
View Article and Find Full Text PDFSoft Matter
January 2025
Biophysical Chemistry Laboratory, Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India.
The adsorption and aggregation of amphiphiles at different solvent interfaces are of great scientific and technological importance. In this study, interfacial tension measurements of surface-active compounds-ionic liquid 2-dodecyl-2,2dimethylethanolammonium bromide (12Cho.Br) and cationic surfactant cetyltrimethylammonium bromide (CTAB)-were conducted both in the absence and presence of ciprofloxacin (CIP).
View Article and Find Full Text PDFLangmuir
December 2024
Department of Biomedical and Chemical Engineering and the Bioinspired Institute, Syracuse University, Syracuse, New York 13244, United States.
Copolymer nanovesicles are used extensively in chemical processes and biomedical applications in which they are subjected to dynamic flow environments. Flow-induced vesicle deformation, fragmentation, and reorganization modify the energetic (e.g.
View Article and Find Full Text PDFJ Colloid Interface Sci
December 2024
School of Health Sciences, Stopford Building, The University of Manchester, Oxford Road, Manchester M13 9PT, UK.
Hypothesis: Nanoscale characterisation of the self-associated species formed by amphiphilic pharmaceuticals in aqueous solution carries relevance across their entire journey from development through to manufacture - relevant, therefore, not only as regards formulation of the drug products as medicines, but also potentially relevant to their bioavailability, activity, and clinical side effects. Such knowledge and understanding, however, can only be fully secured by applying a range of experimental and theoretical methodologies.
Experiments: Herein, we apply a synergistic combination of solubility, surface tension, SANS, NMR and UV spectroscopic studies, together with MD simulation and QM calculations, to investigate the meso-structures of propranolol hydrochloride aggregates in bulk aqueous solutions, at concentrations spanning 2.
Macromol Rapid Commun
December 2024
School of Mathematical and Physical Sciences, University of Sheffield, Dainton Building, Sheffield, S3 7HF, UK.
Natural single-chain nanoparticles (SCNPs) such as proteins have inspired research into the formation and application of synthetic SCNPs. Although the latter can mimic general aspects of the self-assembly behavior of their biological counterparts, these systems remain relatively understudied. In this respect, a systematic series of amphiphilic statistical copolymers (ASC) of different molecular weights, with a hydrophilic comonomer (methacrylic acid) and varying hydrophobic comonomer to encompass methacrylates of different hydrophobicity, are synthesized.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!