Noncovalent electrostatic interactions are important in many biological and chemical reactions, especially those that involve charged intermediates. There has been a growing interest in using electrostatic ligand designs-placing charges in the second coordination sphere-to improve molecular reactivity, catalysis, and electrocatalysis. For instance, an iron porphyrin bearing four cationic -trimethylanilinium groups, Fe(-TMA), has been reported to be an exceptional electrocatalyst for both the carbon dioxide reduction reaction (CORR) and the oxygen reduction reaction (ORR). These reactions involve many different steps, and it is not evident which steps are affected by the four positive charges, or why. By comparing Fe(-TMA) with the related iron-tetraphenylporphyrin, this work examines how covalently positioned charged groups affect substrate binding and other key pre-equilibria of both the ORR and CORR, specifically acetate, dioxygen, and carbon dioxide binding. This study is among the first to directly measure the effects of electrostatics on ligand-binding. The results show that adding electrostatic groups to a catalyst design often results in a complex interplay of multiple effects, including changes in pre-equilibria prior to substrate binding, combinations of through-space and inductive contributions, and effects of ionic strength and solution dielectric. The inverse half-order dependence of binding constant on ionic strength is proposed as a clear marker for an electrostatic effect. The conclusions provide guidance for the increasingly popular electrostatic ligand designs in catalysis and other reactivity.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.inorgchem.0c02703DOI Listing

Publication Analysis

Top Keywords

iron porphyrin
8
reactions involve
8
electrostatic ligand
8
carbon dioxide
8
reduction reaction
8
substrate binding
8
ionic strength
8
binding
5
electrostatic
5
intramolecular electrostatic
4

Similar Publications

Defining the role of Hmu and Hus systems in Porphyromonas gingivalis heme and iron homeostasis and virulence.

Sci Rep

December 2024

Laboratory of Medical Biology, Faculty of Biotechnology, University of Wrocław, 14A F. Joliot-Curie St., 50-383, Wrocław, Poland.

Iron and heme are essential nutrients for all branches of life. Pathogenic members of the Bacteroidota phylum, including Porphyromonas gingivalis, do not synthesize heme and rely on host hemoproteins for heme as a source of iron and protoporphyrin IX. P.

View Article and Find Full Text PDF

In this study, 3,4-diaminobenzoic acid (DABA) was introduced into the porphyrin metal-organic framework (PCN-224) for the first time to prepare a ratiometric fluorescent probe (PCN-224-DABA) to quantitatively detect ferric iron (Fe(III)) and selenium (IV) (Se(IV)). The fluorescence attributed to the DABA of PCN-224-DABA at 345 nm can be selectively quenched by Fe(III) and Se(IV), but the fluorescence emission peak attributed to tetrakis (4-carboxyphenyl) porphyrin (TCPP) at 475 nm will not be disturbed. Therefore, the ratio of I/I with an excitation wavelength of 270 nm can be designed to determine Fe(III) and Se(IV).

View Article and Find Full Text PDF

We are facing a world-wide shortage of clean drinking water which will only be further exacerbated by climate change. The development of reliable and affordable methods for water remediation is thus of utmost importance. Chlorine (which forms active hypochlorites in solution) is the most commonly used disinfectant due to its reliability and low cost.

View Article and Find Full Text PDF

Upgrading the Bioinspired Iron-Polyporphyrin Structures by Abiological Metals Toward New-Generation Reactive Oxygen Biocatalysts.

Nano Lett

December 2024

College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.

Developing artificial enzymes based on organic molecules or polymers for reactive oxygen biocatalysis has broad applicability. Here, inspired by heme-based enzyme systems, we construct the abiological iron group metal-based polyporphyrin (Ru/Os-coordinated porphyrin-based biocatalyst, Ru/Os-PorBC) to serve as a new generation of efficient and versatile reactive oxygen species (ROS)-related biocatalyst. Due to the structural benefits, including excellent electron configuration, appropriate bandgap, and optimized adsorption and activation of reaction intermediates, Ru/Os-PorBC shows unparalleled ROS-production activities regarding maximum reaction rate and turnover numbers, which also demonstrates superior pH and temperature adaptability compared to natural enzymes.

View Article and Find Full Text PDF

Hemes play key roles in enzymatic production of the mammalian gasotransmitter NO by nitric oxide synthase as well as in conversion from inorganic nitrite. In the present study, we report a hitherto unknown pathway of nitrosyl formation thiol reduction of a iron porphyrin nitrate complex in the solid state.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!