Compared with typical binary polymeric memory materials, functional polymers with ternary memory performance possess significant potential to achieve ultra-high-density data storage. The reported ternary memory polymers are normally driven by dual-mechanism. However, the involved thermodynamically unstable mechanisms (field-induced conformation change or conductive filament formation/fracture) may result in the poor reliability of memory devices under high-temperature working atmosphere. Another strategy to realize ternary memory is introducing charge trapping/de-trapping mechanism by attaching charge trap atom/group at electron donor, which is proved not always effective. Moreover, the synergistic two mechanisms may have difficulty for clarifying the relationship between memory performance and chemical structures, which is the core issue of polymer memory materials. Besides, some multi-level memory materials need the cooperative participation of artificially setting compliance current, which is the extension of typical binary memory and may cause a more complicated technique and logic circuit. Herein, based on charge-transfer mechanism, a concise and effective strategy to realize ternary memory application is proposed. By inserting a Zn ion, the charge-transfer process occurring in electron donors can lead to the novel electrical tri-stability memory behaviors. This work can provide a novel idea for achieving reliable and intrinsic ternary high-density data storage applications.

Download full-text PDF

Source
http://dx.doi.org/10.1002/smll.202005659DOI Listing

Publication Analysis

Top Keywords

ternary memory
16
memory
12
memory materials
12
typical binary
8
memory performance
8
data storage
8
strategy realize
8
realize ternary
8
ternary
5
zinc ion
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!