Associative learning enables animals to predict rewards or punishments by their associations with predictive stimuli, while non-associative learning occurs without reinforcement. The latter includes latent inhibition (LI), whereby animals learn to ignore an inconsequential 'familiar' stimulus. Individual honey bees display heritable differences in expression of LI. We examined the behavioral and neuronal responses between honey bee genetic lines exhibiting high and low LI. We observed, as in previous studies, that high LI lines learned a familiar odor more slowly than low LI bees. By measuring gustatory responses to sucrose, we determined that perception of sucrose reward was similar between both lines, thereby not contributing to the LI phenotype. We then used extracellular electrophysiology to determine differences in neural responses of the antennal lobe (AL) to familiar and novel odors between the lines. Low LI bees responded significantly more strongly to both familiar and novel odors than the high LI bees, but the lines showed equivalent differences in response to the novel and familiar odors. This work suggests that some effects of genotype are present in early olfactory processing, and those effects could complement how LI is manifested at later stages of processing in brains of bees in the different lines.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8979013 | PMC |
http://dx.doi.org/10.1007/s00359-020-01451-5 | DOI Listing |
J Clin Med
January 2025
Children's Hospital, Taif Health Cluster, Taif 26514, Saudi Arabia.
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is closely related to SARS-CoV and uses angiotensin-converting enzyme 2 as its cellular receptor. In early 2020, reports emerged linking CoV disease 2019 (COVID-19) to olfactory and gustatory disturbances. These disturbances could be attributed to virus-induced damage to olfactory neurons or immune responses, thereby affecting sensory functions.
View Article and Find Full Text PDFGenes Cells
January 2025
Laboratory for Systems Molecular Ethology, RIKEN Center for Brain Science, Saitama, Japan.
Single-cell RNA-sequencing (scRNA-seq) is a powerful method to comprehensively overlook gene expression profiles of individual cells in various tissues, providing fundamental datasets for classification of cell types and further functional analyses. Here we adopted scRNA-seq analysis for the zebrafish olfactory sensory neurons which respond to water-borne odorants and pheromones to elicit various behaviors crucial for survival and species preservation. Firstly, a single-cell dissociation procedure of the zebrafish olfactory rosettes was optimized by using cold-active protease, minimizing artifactual neuronal activation.
View Article and Find Full Text PDFAnimals (Basel)
December 2024
Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal.
The aim of this preliminary study was to morphologically and dimensionally characterize the cat's olfactory bulb in the sagittal plane and to establish potential relationships with the cranial conformation, based on the study of in vivo MRI images. Midsagittal and transverse T2-weighted images of the head of 40 cats subjected to MRI were selected. For each animal, the skull index was calculated to classify the cranial conformation.
View Article and Find Full Text PDFDominance hierarchies are key to social organization in group-living species, requiring individuals to recognize their own and others' ranks. This is particularly complex for intermediate-ranking animals, who navigate interactions with higher- and lower-ranking individuals. Using in situ hybridization, we examined how the brains of intermediate-ranked mice in hierarchies respond to dominant and subordinate stimuli by labeling activity-induced immediate early genes and neuronal markers.
View Article and Find Full Text PDFMol Cell Biochem
January 2025
Neurodegenerative Diseases Laboratory, Center for Biomedicine, Universidad Mayor, Avenida Alemania 0281, 4780000, Temuco, La Araucanía, Chile.
Parkinson's disease (PD) is a progressive neurodegenerative disorder characterized by tremor, rigidity, and bradykinesia, beginning with early loss of dopaminergic neurons in the ventrolateral substantia nigra and advancing to broader neurodegeneration in the midbrain. The clinical heterogeneity of PD and the lack of specific diagnostic tests present significant challenges, highlighting the need for reliable biomarkers for early diagnosis. Alpha-synuclein (α-Syn), a protein aggregating into Lewy bodies and neurites in PD patients, has emerged as a key biomarker due to its central role in PD pathophysiology and potential to reflect pathological processes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!