Background: For the analysis of pesticide residues in water samples, various extraction techniques are available. However, liquid-liquid extraction (LLE) and solid-phase extraction (SPE) are most commonly used. LLE and SPE extraction techniques each have their own disadvantages.

Objective: The aim of the study was to develop an environment-friendly multi-residue method for determination of multiclass pesticides in environmental water samples (ground water, agricultural field/irrigation run-off water, etc.).

Methods: The magnetic solid-phase extraction (MSPE) technique using surface-fabricated magnetic nano-particles was used for extraction of water samples, followed by quantification by gas chromatography tandem mass spectrometry. The developed multi-residue method was validated in terms of linearity, LOD, LOQ, recovery, and repeatability.

Results: Recovery data were obtained at the spiking concentration level of 1, 5, and 10 µg/L, yielding recoveries in the range of 70-120%. Overall, non-polar pesticides from all the groups, i.e., synthetic pyrethroid, organophosphorus, organochlorine, herbicides, and fungicides, show acceptable recovery percentages. Good linearity (r2 value ≥ 0.99) was observed at the concentration range of 0.5-100 µg/L. RSD values were found ≤ 18.8.

Conclusions: The study shows that the method is specific, rapid, and low cost, as well as having a good linearity and recovery; thus, this method is applied in routine purposes for the analysis of pesticide residue in real water samples.

Highlights: Due to better adsorption ability, permeability, and magnetic separability, the functionalized nano-particles were found effective in the enrichment of 22 multiclass pesticides including organo-phosphorus, organo-chlorine, synthetic pyrethroid, herbicides, and fungicides.

Download full-text PDF

Source
http://dx.doi.org/10.1093/jaoacint/qsaa156DOI Listing

Publication Analysis

Top Keywords

solid-phase extraction
12
multiclass pesticides
12
water samples
12
magnetic solid-phase
8
extraction mspe
8
determination multiclass
8
analysis pesticide
8
extraction techniques
8
multi-residue method
8
synthetic pyrethroid
8

Similar Publications

Mitigating matrix effects in oil and gas wastewater analysis: LC-MS/MS method for ethanolamines.

Environ Sci Process Impacts

January 2025

Massachusetts Institute of Technology, Department of Civil and Environmental Engineering, Parsons Laboratory, 15 Vassar Street, Cambridge, Massachusetts 02139, USA.

The high salinity and organic content in oil and gas wastewaters can cause ion suppression during liquid chromatography mass spectrometry (LC/MS) analysis, diminishing the sensitivity and accuracy of measurements in available methods. This suppression is severe for low molecular weight organic compounds such as ethanolamines (, monoethanolamine (MEA), diethanolamine (DEA), triethanolamine (TEA), -methyldiethanolamine (MDEA), and ,-ethyldiethanolamine (EDEA)). Here, we deployed solid phase extraction (SPE), mixed-mode LC, triple quadrupole MS with positive electrospray ionization (ESI), and a suite of stable isotope standards (, one per target compound) to correct for ion suppression by salts and organic matter, SPE losses, and instrument variability.

View Article and Find Full Text PDF

Feasibility of IR-MALDESI Mass Spectrometry Imaging of PFAS.

J Mass Spectrom

February 2025

FTMS Laboratory for Human Health Research, Department of Chemistry, North Carolina State University, Raleigh, North Carolina, USA.

Perfluoroalkyl and polyfluoroalkyl substances (PFAS) are a class of emerging contaminants that have been in use industrially since the 1940s. Their long-term and extensive commercial use has led to their ubiquitous presence in the environment. The ability to measure the bioconcentration and distribution of PFAS in the tissue of aquatic organisms helps elucidate the persistence of PFAS as well as environmental impacts.

View Article and Find Full Text PDF

Rationale: The complexation with dissolved organic matter (DOM) is a pivotal factor influencing transformations, transport, and bioavailability of mercury (Hg) in aquatic environments. However, identifying these complexes poses a significant challenge because of their low concentrations and the presence of coexisting ions.

Methods: In this study, mercury-dissolved organic matter (Hg-DOM) complexes were isolated through solid-phase extraction (SPE) from Hg-humic acid suspensions, and complexes were putatively identified using ultrahigh resolution Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS).

View Article and Find Full Text PDF

The most important aspect of sorbent-based approaches is the use of a sustainable, readily available, and cost-effective sorbent material for sample analysis. Biochar is an emerging and prominent sorbent material for various applications in sorbent-based techniques due to its availability, affordability, eco-friendly nature, porosity, pore structure, abundance of aliphatic and aromatic carbon structures, and abundant oxygen-containing functional groups. On the basis of the numerous benefits of biochar, this review discusses why biochar is the preferred sorbent in sorptive-based techniques.

View Article and Find Full Text PDF

The volatile profile of bee pollen samples from Central and Eastern Europe was investigated by headspace solid phase microextraction (HS-SPME) combined with gas chromatography-mass spectrometry-olfactometry (GC-MS-O). Sampling conditions were optimized for the extraction of volatiles. Pollen odorants were extracted with six different fiber coatings, five various extraction times, three diverse extraction temperatures and three differing desorption times.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!