Background: The thermodimorphic fungi Paracoccidioides spp. are the etiological agents of paracoccidioidomycosis. Although poorly studied, paracoccin (PCN) from Paracoccidioides brasiliensis has been shown to harbor lectinic, enzymatic, and immunomodulatory properties that affect disease development.

Methods: Mutants of P. brasiliensis overexpressing PCN (ov-PCN) were constructed by Agrobacterium tumefaciens-mediated transformation. ov-PCN strains were analyzed and inoculated intranasally or intravenously to mice. Fungal burden, lung pathology, and survival were monitored to evaluate virulence. Electron microscopy was used to evaluate the size of chito-oligomer particles released by ov-PCN or wild-type strains to growth media.

Results: ov-PCN strains revealed no differences in cell growth and viability, although PCN overexpression favored cell separation, chitin processing that results in the release of smaller chito-oligomer particles, and enhanced virulence. Our data show that PCN triggers a critical effect in the cell wall biogenesis through the chitinase activity resulting from overexpression of PCN. As such, PCN overexpression aggravates the disease caused by P. brasiliensis.

Conclusions: Our data are consistent with a model in which PCN modulates the cell wall architecture via its chitinase activity. These findings highlight the potential for exploiting PCN function in future therapeutic approaches.

Download full-text PDF

Source
http://dx.doi.org/10.1093/infdis/jiaa707DOI Listing

Publication Analysis

Top Keywords

cell wall
12
paracoccidioides brasiliensis
8
pcn
8
ov-pcn strains
8
chito-oligomer particles
8
pcn overexpression
8
chitinase activity
8
cell
5
paracoccin overexpression
4
overexpression paracoccidioides
4

Similar Publications

The innate immune system plays a critical role in the rapid recognition and elimination of pathogens through pattern recognition receptors (PRRs). Among these PRRs are the C-type lectins (CTLs) langerin, mannan-binding lectin (MBL), and surfactant protein D (SP-D), which recognize carbohydrate patterns on pathogens. Each represents proteins from different compartments of the body and employs separate effector mechanisms.

View Article and Find Full Text PDF

With the aim of enhancing plants' ability to respond to pathogenic fungi, this study focuses on disease resistance genes. We commenced a series of investigations by capitalizing on the pronounced differences in resistance to Fusarium wilt between resistant and susceptible varieties. Through an in-depth exploration of the metabolic pathways that bolster this defense, we identified genes associated with resistance to f.

View Article and Find Full Text PDF

Objective: The study aimed to investigate the rate of conversion from laparoscopic cholecystectomy (LC) to open cholecystectomy (OC) in our population and determine the potential risk factors associated with it. Understanding these factors helps surgeons predict complex cases and plan surgeries, reducing patient risks and improving outcomes.

Methodology: A cross-sectional observational study was conducted from June 1, 2022, to May 31, 2023, at Hayatabad Medical Complex, Peshawar, on 349 patients undergoing elective LC.

View Article and Find Full Text PDF

Atopic dermatitis (AD) is characterized by dysregulated T cell immunity and skin microbiome dysbiosis with predominance of Staphylococcus aureus, which is associated with exacerbating AD skin inflammation. Specific glycosylation patterns of S. aureus cell wall structures amplify skin inflammation through interaction with Langerhans cells (LCs).

View Article and Find Full Text PDF

The road of lipid migration in flaxseed (Linum usitatissimum L.) during germination.

Food Res Int

February 2025

Research Center of Grain and Oil Functionalized Processing in Universities of Shaanxi Province, College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, PR China. Electronic address:

Lipids are essential sources of carbon and energy during flaxseed germination; however, the dynamic changes in key lipid metabolites, pathways, and their locations remain unclear. This study revealed that oil bodies migrated from well-distributed locations to the cell wall between 0-2 d, with cell contours gradually blurring during 2-3 d, initiating the germination process. Subsequently, the order of oil body migration was leaf > stem > root during 4-7 d.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!