First Report of Alternaria tenuissima Causing Leaf Blight on Sugarcane in China.

Plant Dis

Sugarcane Research Institute, Yunnan Academy of Agricultural Sciences, 363 East Lingquan Road, Kaiyuan, China, 661699;

Published: November 2020

AI Article Synopsis

  • Sugarcane, primarily grown in Yunnan, China, was first affected by leaf blight in December 2018, specifically on certain varieties in Kaiyuan.
  • The disease presented with initial wilted symptoms resembling water stress, which later developed into irregular straw-yellow lesions with black conidia forming in humid conditions.
  • Isolation of the pathogen revealed it to be Alternaria tenuissima, through both morphological characteristics and molecular identification techniques.

Article Abstract

Sugarcane (Saccharum officinarum L.) is the main sugar crop in China. Yunnan is the second largest sugarcane production province in China. In December 2018, leaf blight was first observed on almost every leaf of sugarcane on 'Huanan 54-11', 'Baimei' and 'Chongan' in Kaiyuan (103°27' E, 23°72' N), Yunnan. In October 2019, during our survey in the field in Lingcang (100°08' E, 23°88' N), Yunnan, this disease was also observed on 'ROC 25'. Symptoms of the disease initially appeared as wilted, which seemed to be cause by water stress. As the disease progressed, irregular straw-yellow and blighted lesion ran throughout the leaf lamina from leaf tip to entire leaf sheath, many small black conidia formed in the dead leaf tissue under humid conditions. Symptomatic leaf tissues were surface-sterilized with 70% ethanol for 30 s, 0.1% HgCl2 for 1 min, and rinsed with sterilized water three times, air dried on sterile filter paper, and plated on potato dextrose agar (PDA). Six isolates were obtained from six symptomatic leaf samples and were transferred onto potato carrot agar (PCA). Colonies on PDA were white with loose aerial hyphae at first, then turned to dark olive or dark. Colonies on PCA were grayish with sparse hyphae, then turned to dark gray. Conidiophores were brown, simple or branched, and produced numerous conidia in short chains. Conidia (n = 50) were obclavate to obpyriform or ellipsoid, brown to dark brown, with a cylindrical short beak at the tip (2.3 to 17.3 µm in length), and 15.3 to 46.6 μm × 4.2 to 17.9 μm, 2 to 7 transverse septa and 0 to 3 longitudinal septa. Morphologically, the isolates were identified as Alternaria tenuissima (Simmons 2007). Two representative isolates C4 and C5 were selected for molecular identification. The internal transcribed spacers (ITS), Histone 3 genes and plasma membrane ATPase were amplified with primer pairs ITS1/ITS4, H3-1a/H3-1b and ATPDF1/ATPDR1, respectively (Glass et al. 1995; Lawrence et al. 2013). The sequences were deposited in GenBank (ITS, MT679707-MT679708; Histone 3, MT710929-MT710930; ATPase, MT833928-MT833929). BLAST searches showed ≥99% nucleotide identity to the sequence of A. tenuissima (ITS, 100% to MN822571; Histone 3, 100% to MN481955; ATPase, 99% to JQ671875, 100% to MH492703, respectively). Thus, the fungus was identified as A. tenuissima based on morphological and molecular characteristics. For pathogenicity tests, five healthy 2-month-old potted sugarcane leaves were wounded with one sterile needle and inoculated with 20 μl of suspension of 106 conidia/ mL, and five plants were inoculated with distilled water as the controls. Plants were placed in a greenhouse at 25 to 35°C. After two months, the leaf wound inoculated with the putative pathogen displayed blighted as those observed in the field whereas the controls remained symptomless. The fungus was reisolated from symptomatic leaves with the same morphological and molecular traits as the original isolates. The fungus was not isolated from the control plants. Pathogenicity tests were repeated two times. A. tenuissima causing leaf blight on barley in China was reported in 2008 (Luo et al. 2008). Leaf spot disease of sugarcane caused by A. tenuis has been recorded in Maharashtra (Patil et al. 1974). To our knowledge, this is the first report on A. tenuissima affecting leaf blight on sugarcane in Yunnan Province, China. Identification of the causes of the disease is important to develop effective disease management strategies. The author(s) declare no conflict of interest. Funding: This research was supported by Sugar Crop Research System (CARS-170303), the Yunling Industry and Technology Leading Talent Training Program "Prevention and Control of Sugarcane Pests" (2018LJRC56), and the Yunnan Province Agriculture Research System. References: Glass, N. L., et al. 1995. Appl. Environ. Microbiol. 61:1323. Lawrence, D. P., et al. 2013. Mycologia 105:530. Luo, Z., et al. 2008. Acta Phytophy. Sin. 35(5): 469-470. Patil, A.O., et al. 1974. Res. J. Mahatma Phule Agric. Univ. 5(2): 122-123. Simmons, E. G. 2007. Alternaria: An Identification Manual. CBS Fungal Biodiversity Centre, Utrecht, The Netherlands. Caption for supplementary Figure 1 Supplementary Figure S1. Disease symptoms of sugarcane leaf blight disease and morphological characteristics of Alternaria tenuissima. (A) Typical straw-yellow and blighted lesions on naturally-infected leaves of sugarcane; (B) Infected symptoms on wounded leaves of sugarcane two months after artificial infection with A. tenuissima; (C) Colony of A. tenuissima on PDA; (D) Colony of A. tenuissima on PCA; and (E-F) Sporulation and conidia of A. tenuissima on PCA. (Scale bars = 100 μm; 20 μm).

Download full-text PDF

Source
http://dx.doi.org/10.1094/PDIS-07-20-1507-PDNDOI Listing

Publication Analysis

Top Keywords

leaf blight
20
leaf
14
alternaria tenuissima
12
tenuissima
11
sugarcane
11
tenuissima causing
8
causing leaf
8
blight sugarcane
8
sugar crop
8
province china
8

Similar Publications

Bacterial Leaf Blight (BLB) usually attacks rice in the flowering stage and can cause yield losses of up to 50% in severely infected fields. The resulting yield losses severely impact farmers, necessitating compensation from the regulatory authorities. This study introduces a new pipeline specifically designed for detecting BLB in rice fields using unmanned aerial vehicle (UAV) imagery.

View Article and Find Full Text PDF

Control of HS synthesis by the monomer-oligomer transition of OsCBSX3 for modulating rice growth-immunity balance.

Mol Plant

January 2025

State Key Laboratory of Wheat Improvement, Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai'an 271018, China. Electronic address:

Hydrogen sulfide (H2S) is recognized as an important gaseous signaling molecule, similar to nitric oxide and carbon monoxide. However, the synthesis mechanism of H2S and its role in enhancing rice resistance to Xanthomonas oryzae pv. oryzicola (Xoc) and Xanthomonas oryzae pv.

View Article and Find Full Text PDF

A comprehensive dataset on lemon leaf disease can surely bring a lot of potentials into the development of agricultural research and the improvement of disease management strategies. This dataset was developed from 1354 raw images taken with professional agricultural specialist guidance from July to September 2024 in Charpolisha, Jamalpur, and further enhanced with augmented techniques, adding 9000 images. The augmentation process involves a set of techniques-flipping, rotation, zooming, shifting, adding noise, shearing, and brightening-to increase variety for different lemon leaf condition representations.

View Article and Find Full Text PDF

Fire blight, caused by Erwinia amylovora, is a significant threat to fruit crops, with limited biocontrol methods. This study aimed to develop a nanosystem using mesoporous silica nanoparticles (MSNs) loaded with a phenolic plant extract (ZP) derived from Myrtus communis, Thymus vulgaris, and Curcuma longa, and coated with natural biopolymers Gum Tragacanth (GT) and sodium alginate (SA). The MSNs were synthesized and characterized by XRD, FTIR, and TEM, exhibiting a specific surface area of about 750 m/g and an average pore diameter of 5 nm.

View Article and Find Full Text PDF

; unveiling the cause, spread, and molecular basis of a novel coriander leaf blight disease in Egypt.

Heliyon

January 2025

Microbial Activity Unit, Department of Microbiology, Soils, Water and Environment Research Institute, Agricultural Research Center (ARC), Giza, 12619, Egypt.

L. faced a new and previously undocumented leaf blight disease for the first time. This disease manifests initially as small, circular, or irregular brown spots on older leaves, which gradually expand and merge into dark brownish blotches over time.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!