Axolotls and other salamanders have the capacity to regenerate lost tissue after an amputation or injury. Growth and morphogenesis are coordinated within cell groups in many contexts by the interplay of transcriptional networks and biophysical properties such as ion flows and voltage gradients. It is not, however, known whether regulators of a cell's ionic state are involved in limb patterning at later stages of regeneration. Here we manipulated expression and activities of ion channels and gap junctions in vivo, in axolotl limb blastema cells. Limb amputations followed by retroviral infections were performed to drive expression of a human gap junction protein Connexin 26 (Cx26), potassium (Kir2.1-Y242F and Kv1.5) and sodium (NeoNav1.5) ion channel proteins along with EGFP control. Skeletal preparation revealed that overexpressing Cx26 caused syndactyly, while overexpression of ion channel proteins resulted in digit loss and structural abnormalities compared to EGFP expressing control limbs. Additionally, we showed that exposing limbs to the gap junction inhibitor lindane during the regeneration process caused digit loss. Our data reveal that manipulating native ion channel and gap junction function in blastema cells results in patterning defects involving the number and structure of the regenerated digits. Gap junctions and ion channels have been shown to mediate ion flows that control the endogenous voltage gradients which are tightly associated with the regulation of gene expression, cell cycle progression, migration, and other cellular behaviors. Therefore, we postulate that mis-expression of these channels may have disturbed this regulation causing uncoordinated cell behavior which results in morphological defects.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8796139 | PMC |
http://dx.doi.org/10.1387/ijdb.200114jw | DOI Listing |
Naunyn Schmiedebergs Arch Pharmacol
January 2025
Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Punjab, India.
Neuropathic pain, a challenging condition often associated with diabetes, trauma, or chemotherapy, impairs patients' quality of life. Current treatments often provide inconsistent relief and notable adverse effects, highlighting the urgent need for safer and more effective alternatives. This review investigates marine-derived bioactive compounds as potential novel therapies for neuropathic pain management.
View Article and Find Full Text PDFGlycoconj J
January 2025
Department of Medical Biotechnology and Translational Medicine, University of Milano, Milan, Italy.
Cystic Fibrosis (CF) is a life-threatening hereditary disease resulting from mutations in the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) gene that encodes a chloride channel essential for ion transport in epithelial cells. Mutations in CFTR, notably the prevalent F508del mutation, impair chloride transport, severely affecting the respiratory system and leading to recurrent infections. Recent therapeutic advancements include CFTR modulators such as ETI, a combination of two correctors (Elexacaftor and Tezacaftor) and a potentiator (Ivacaftor), that can improve CFTR function in patients with the F508del mutation.
View Article and Find Full Text PDFMol Ther
January 2025
Department CIBIO, University of Trento, Via delle Regole 101, 38123 Trento, Italy. Electronic address:
Cystic Fibrosis (CF) is a life-shortening autosomal recessive disease caused by mutations in the CFTR gene, resulting in functional impairment of the encoded ion channel. F508del mutation, a trinucleotide deletion, is the most frequent cause of CF affecting approximately 80% of persons with cystic fibrosis (pwCFs). Even though current pharmacological treatments alleviate the F508del-CF disease symptoms there is no definitive cure.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, 690022 Vladivostok, Russia.
Inflammation is a physiological response of the immune system to infectious agents or tissue injury, which involves a cascade of vascular and cellular events and the activation of biochemical pathways depending on the type of harmful agent and the stimulus generated. The Kunitz peptide HCIQ2c1 of sea anemone is a strong protease inhibitor and exhibits neuroprotective and analgesic activities. In this study, we investigated the anti-inflammatory potential of HCIQ2c1 in histamine- and lipopolysaccharide (LPS)-activated RAW 264.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Department of Molecular Medicine, Aziz Sancar Institute of Experimental Medicine, Istanbul University, 34093 Istanbul, Türkiye.
Granulomatous mastitis (GM) is a rare, benign, but chronic and recurrent inflammatory breast disease that significantly impacts physical and psychological well-being. It often presents symptoms such as pain, swelling, and discharge, leading to diagnostic confusion with malignancy. The etiology of GM remains unclear, though autoimmune and multifactorial components are suspected.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!