Influence of order-to-disorder transitions on the optical properties of the aluminum plasmonic metasurface.

Nanoscale

Light, Nanomaterials & Nanotechnologies (L2n), CNRS ERL 7004, Université de Technologie de Troyes, 12 rue Marie Curie, 10004 Troyes Cedex, France.

Published: November 2020

To mimic the optical influence of disorder in condensed matter, the effect of uniform disorder on plasmonic resonances were investigated numerically and experimentally on aluminum (Al) nanoparticle arrays. Resorting to the analogue of a plasmonic periodic array to a crystal on the sharp optical spectrum and its anisotropy, the disorder in the transition from crystal to glass (with broadened spectrum and isotropy) is imitated by three kinds of Al plasmonic metasurfaces: varying the displacement, size and rotation of each Al nanoparticle in the periodic array. The random variation on the location or size of each Al nanodisk in the plasmonic crystal induces broadening and reduction of their plasmonic resonances without significantly shifting its wavelength. Moreover, by rotating each Al nanorod in the plasmonic crystal by a random angle, the polarization dependence of plasmonic resonances is progressively decreased by increasing the rotation disorder. Thanks to these three kinds of Al metasurfaces, an enlightened understanding of the random physics in the solid state and the influence of manufacturing deviation in nanophotonics is supported.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d0nr06334gDOI Listing

Publication Analysis

Top Keywords

plasmonic resonances
12
plasmonic
8
periodic array
8
three kinds
8
plasmonic crystal
8
influence order-to-disorder
4
order-to-disorder transitions
4
transitions optical
4
optical properties
4
properties aluminum
4

Similar Publications

Background: B7 homolog 3 (B7-H3), an overexpressed antigen across multiple solid cancers, represents a promising target for CAR T cell therapy. This study investigated the expression of B7-H3 across various solid tumors and developed novel monoclonal antibodies (mAbs) targeting B7-H3 for CAR T cell therapy.

Methods: Expression of B7-H3 across various solid tumors was evaluated using RNA-seq data from TCGA, TARGET, and GTEx datasets and by flow cytometry staining.

View Article and Find Full Text PDF

Microvirin is a lectin molecule known to have monovalent interaction with glycoprotein gp120. A previously reported high-resolution structural analysis defines the mannobiose-binding cavity of Microvirin. Nonetheless, structure does not directly define the energetics of binding contributions of protein contact residues.

View Article and Find Full Text PDF

The development of resistance to traditional antifungal therapies has necessitated the exploration of alternative treatment strategies to effectively manage fungal infections, particularly those induced by (). This research investigates the possibility of integrating silver nanoparticles (AgNPs) with Terbinafine to improve antifungal effectiveness. Terbinafine, while potent, faces challenges with specific fungal strains, highlighting the need for strategies to enhance its treatment efficacy.

View Article and Find Full Text PDF

Refractive index (RI) and temperature (T) are both critical environmental parameters for environmental monitoring, food production, and medical testing. The paper develops a D-shaped photonic crystal fiber (PCF) sensor to measure RI and T simultaneously. Its cross-sectional structure encompasses a hexagonal-hole lattice, with one hole selectively filled with toluene for temperature sensing.

View Article and Find Full Text PDF

Materials with Negative Permittivity or Negative Permeability-Review, Electrodynamic Modelling, and Applications.

Materials (Basel)

January 2025

Institute of Microelectronics and Optoelectronics, Warsaw University of Technology, Koszykowa 75, 00-662 Warsaw, Poland.

A review of natural materials that exhibit negative permittivity or permeability, including gaseous plasma, metals, superconductors, and ferromagnetic materials, is presented. It is shown that samples made of such materials can store large amount of the electric (magnetic) energy and create plasmonic resonators for certain values of permittivity, permeability, and dimensions. The electric and the magnetic plasmon resonances in spherical samples made of such materials are analyzed using rigorous electrodynamic methods, and the results of the analysis are compared to experimental data and to results obtained with other methods.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!