A major QTL for oviposition deterrence to orange wheat blossom midge was detected on chromosome 1A in the Canadian breeding line BW278 that was inherited from the Chinese variety Sumai-3. Orange wheat blossom midge (OWBM, Sitodiplosis mosellana Géhin, Diptera: Cecidomyiidae) is an important insect pest of wheat (Triticum aestivum L.) that reduces both grain yield and quality. Oviposition deterrence results in a reduction of eggs deposited on spikes relative to that observed on a wheat line preferred by OWBM. Quantification of oviposition deterrence is labor-intensive, so wheat breeders require efficient DNA markers for the selection of this trait. The objective of this study was to identify quantitative trait loci (QTL) for oviposition deterrence in a doubled haploid (DH) population developed from the spring wheat cross Superb/BW278. The DH population and check varieties were evaluated for OWBM kernel damage from five field nurseries over three growing seasons. QTL analysis identified major effect loci on chromosomes 1A (QSm.mrc-1A) and 5A (QSm.mrc-5A). Reduced kernel damage was contributed by BW278 at QSm.mrc-1A and Superb at QSm.mrc-5A. QSm.mrc-1A mapped to the approximate location of the oviposition deterrence QTL previously found in the American variety Reeder. However, haplotype analysis revealed that BW278 inherited this oviposition deterrence allele from the Chinese spring wheat variety Sumai-3. QSm.mrc-5A mapped to the location of awn inhibitor gene B1, suggesting that awns hinder OWBM oviposition. Single-nucleotide polymorphisms (SNPs) were identified for predicting the presence or absence of QSm.mrc-1A based upon haplotype. Functional annotation of candidate genes in 1A QTL intervals revealed eleven potential candidate genes, including a gene involved in terpenoid biosynthesis. SNPs for QSm.mrc-1A and fully awned spikes provide a basis for the selection of oviposition deterrence to OWBM.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00122-020-03720-yDOI Listing

Publication Analysis

Top Keywords

oviposition deterrence
32
orange wheat
12
wheat blossom
12
blossom midge
12
spring wheat
12
oviposition
9
wheat
9
deterrence
8
deterrence orange
8
qtl oviposition
8

Similar Publications

Alteration in microbes changed the contents of oviposition-deterrent pheromones on the egg surface.

Bull Entomol Res

November 2024

Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou, China.

Microorganisms symbiotic with insects, whether permanently or temporarily, play a crucial role in the nutrition, development, reproduction, defence, and metamorphosis regulation. In some Lepidoptera, oviposition-deterrent pheromones (ODPs) on egg surface were used by pregnant females to modify the behaviour of conspecifics to avoid excessive competition for limited resources. In this study, we constructed four different groups, including, OH, OA, SH, and OA, which either feed on different hosts or grow in different environments.

View Article and Find Full Text PDF

The spotted-wing drosophila, and the cosmopolitan vinegar fly feed on soft fruit and berries and widely overlap in geographic range. The presence of reduces egg-laying in , possibly because outcompetes larvae feeding in the same fruit substrate. Flies use pheromones to communicate for mating, but pheromones also serve a role in reproductive isolation between related species.

View Article and Find Full Text PDF

Previous studies have shown oviposition deterring properties of 8 coconut free fatty acid (CFFA) compounds on fruit flies with different key deterrent components for different species. Here we evaluated oviposition deterrence of CFFA using laboratory 2-choice bioassays against Zeugodacus cucurbitae, determined key-bioactive deterrent compounds, and evaluated their behavioral mode. Unlike other reported fruit fly species, CFFA mixture increased Z.

View Article and Find Full Text PDF

Plants with constitutive defense chemicals exist widely in nature. The phenomenon is backed by abundant data from plant chemical ecology. Sufficient data are also available to conclude that plant defenses act as deterrent and repellent to attacking herbivores, particularly deleterious generalist insects.

View Article and Find Full Text PDF

Invasive brown algae (Sargassum spp.) as a potential source of biocontrol against Aedes aegypti.

Sci Rep

September 2024

Institut Pasteur de Guadeloupe, Vector-Borne Diseases Laboratory, Environment and Health Research Department, Lieu-Dit Morne Jolivière, 97139, Les Abymes, Guadeloupe, France.

Influxes of sargassos are responsible for economic and environmental disasters in areas where they bloom, especially in regions whose main income relies on tourism and with limited capacity for sanitation and public health response. A promising way of valorization would be to convert this incredible biomass into tools to fight the deadly vector mosquito Aedes aegypti. In the present study, we generated hydrolates and aqueous extracts from three main Sargassum morphotypes identified in Guadeloupe (French West Indies): Sargassum natans VIII, Sargassum natans I and Sargassum fluitans.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!