Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 143
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 994
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3134
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Abnormally-synchronized, high-voltage spindles (HVSs) are associated with motor deficits in 6-hydroxydopamine-lesioned parkinsonian rats. The non-stationary, spike-and-wave HVSs (5-13 Hz) represent the cardinal parkinsonian state in the local field potentials (LFPs). Although deep brain stimulation (DBS) is an effective treatment for the Parkinson's disease, continuous stimulation results in cognitive and neuropsychiatric side effects. Therefore, an adaptive stimulator able to stimulate the brain only upon the occurrence of HVSs is demanded. This paper proposes an algorithm not only able to detect the HVSs with low latency but also friendly for hardware realization of an adaptive stimulator. The algorithm is based on autoregressive modeling at interval, whose parameters are learnt online by an adaptive Kalman filter. In the LFPs containing 1131 HVS episodes from different brain regions of four parkinsonian rats, the algorithm detects all HVSs with 100% sensitivity. The algorithm also achieves higher precision (96%) and lower latency (61 ms), while requiring less computation time than the continuous wavelet transform method. As the latency is much shorter than the mean duration of an HVS episode (4.3 s), the proposed algorithm is suitable for realization of a smart neuromodulator for mitigating HVSs effectively by closed-loop DBS.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10439-020-02680-0 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!