The removal of electrons located in the core shells of molecules creates transient states that live between a few femtoseconds to attoseconds. Owing to these short lifetimes, time-resolved studies of these states are challenging and complex molecular dynamics driven solely by electronic correlation are difficult to observe. Here, we obtain few-femtosecond core-excited state lifetimes of iodine monochloride by using attosecond transient absorption on iodine 4d6p transitions around 55 eV. Core-level ligand field splitting allows direct access of excited states aligned along and perpendicular to the ICl molecular axis. Lifetimes of 3.5 ± 0.4 fs and 4.3 ± 0.4 fs are obtained for core-hole states parallel to the bond and 6.5 ± 0.6 fs and 6.9 ± 0.6 fs for perpendicular states, while nuclear motion is essentially frozen on this timescale. Theory shows that the dramatic decrease of lifetime for core-vacancies parallel to the covalent bond is a manifestation of non-local interactions with the neighboring Cl atom of ICl.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7669856PMC
http://dx.doi.org/10.1038/s41467-020-19496-0DOI Listing

Publication Analysis

Top Keywords

states
5
attosecond spectroscopy
4
spectroscopy reveals
4
reveals alignment
4
alignment dependent
4
dependent core-hole
4
core-hole dynamics
4
dynamics icl
4
icl molecule
4
molecule removal
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!