The negative organic carbon isotope excursion (CIE) associated with the end-Triassic mass extinction (ETE) is conventionally interpreted as the result of a massive flux of isotopically light carbon from exogenous sources into the atmosphere (e.g., thermogenic methane and/or methane clathrate dissociation linked to the Central Atlantic Magmatic Province [CAMP]). Instead, we demonstrate that at its type locality in the Bristol Channel Basin (UK), the CIE was caused by a marine to nonmarine transition resulting from an abrupt relative sea level drop. Our biomarker and compound-specific carbon isotopic data show that the emergence of microbial mats, influenced by an influx of fresh to brackish water, provided isotopically light carbon to both organic and inorganic carbon pools in centimeter-scale water depths, leading to the negative CIE. Thus, the iconic CIE and the disappearance of marine biota at the type locality are the result of local environmental change and do not mark either the global extinction event or input of exogenous light carbon into the atmosphere. Instead, the main extinction phase occurs slightly later in marine strata, where it is coeval with terrestrial extinctions and ocean acidification driven by CAMP-induced increases in co; these effects should not be conflated with the CIE. An abrupt sea-level fall observed in the Central European basins reflects the tectonic consequences of the initial CAMP emplacement, with broad implications for all extinction events related to large igneous provinces.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7720136 | PMC |
http://dx.doi.org/10.1073/pnas.1917661117 | DOI Listing |
World J Microbiol Biotechnol
January 2025
Systems Biology for Biofuels Group, International Centre for Genetic Engineering and Biotechnology, ICGEB Campus, Aruna Asaf Ali Marg, New Delhi, 110067, India.
The photoautotrophic nature of cyanobacteria, coupled with their fast growth and relative ease of genetic manipulation, makes these microorganisms very promising factories for the sustainable production of bio-products from atmospheric carbon dioxide. However, both in nature and in cultivation, cyanobacteria go through different abiotic stresses such as high light (HL) stress, heavy metal stress, nutrient limitation, heat stress, salt stress, oxidative stress, and alcohol stress. In recent years, significant improvement has been made in identifying the stress-responsive genes and the linked pathways in cyanobacteria and developing genome editing tools for their manipulation.
View Article and Find Full Text PDFNat Commun
January 2025
Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, China.
Artificial photosynthesis of urea from NH and CO seems to remain still essentially unexplored. Herein, three isomorphic three-dimensional covalent organic frameworks with twofold interpenetrated ffc topology are functionalized by benzene, pyrazine, and tetrazine active moieties, respectively. A series of experiment results disclose the gradually enhanced conductivity, light-harvesting capacity, photogenerated carrier separation efficiency, and co-adsorption capacity towards NH and CO in the order of benzene-, pyrazine-, and tetrazine-containing framework.
View Article and Find Full Text PDFLangmuir
January 2025
Materials Chemistry Department, CSIR-Institute of Minerals and Materials Technology, Bhubaneswar, Odisha 751013, India.
Due to the high cost of the available Pt electrocatalysts, the large-scale water electrolysis production of hydrogen has been hindered. Hydrogen generation via electrochemical water splitting is a renewable energy essential to a sustainable society, creating a distinct material interface that shows Pt-like properties with long-term stability crucial to hydrogen evolution reactions (HERs). Here, we synthesized the guanine-assisted facile synthesis of 1 wt % Pt/MoC/C having a layered type morphology via solid state calcined process followed by chemical reduction.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China. Electronic address:
Antibiotic organic pollutants not only pose a significant threat to human health but also generate a large amount of carbon dioxide (CO) during the treatment process of advanced oxidation processes (AOPs). Herein, the antibiotics aqueous solution was firstly degraded and mineralized by light-assisted peroxymonosulfate (PMS) activation over hollow manganese dioxide (MnO) catalyst and then the corresponding released CO was effectively captured by calcium oxide (CaO) particles in the same sealed reactor, achieving wastewater treatment with zero carbon releasing. Under simulated light conditions, hollow MnO is excited to generate electron-hole pairs.
View Article and Find Full Text PDFTalanta
January 2025
Institute of Environmental Science and School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, China. Electronic address:
Lipid droplets (LDs) are essential organelles used to store lipids and participate in cellular lipid metabolism. Imaging LDs is an intuitive approach to comprehend their biological functions. Herein, the LDs-targeted CDs (LD-CDs) featuring robust solvatochromic emission were elaborately designed by a Schiff base reaction using 1, 2-diamino-4-fluorobenzene, 3-dimethylaminophenol, and thiourea as precursors.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!