Cobalamin is a complex organometallic cofactor that is processed and targeted via a network of chaperones to its dependent enzymes. AdoCbl (5'-deoxyadenosylcobalamin) is synthesized from cob(II)alamin in a reductive adenosylation reaction catalyzed by adenosyltransferase (ATR), which also serves as an escort, delivering AdoCbl to methylmalonyl-CoA mutase (MCM). The mechanism by which ATR signals that its cofactor cargo is ready (AdoCbl) or not [cob(II)alamin] for transfer to MCM, is not known. In this study, we have obtained crystallographic snapshots that reveal ligand-induced ordering of the N terminus of ATR, which organizes a dynamic cobalamin binding site and exerts exquisite control over coordination geometry, reactivity, and solvent accessibility. Cob(II)alamin binds with its dimethylbenzimidazole tail splayed into a side pocket and its corrin ring buried. The cosubstrate, ATP, enforces a four-coordinate cob(II)alamin geometry, facilitating the unfavorable reduction to cob(I)alamin. The binding mode for AdoCbl is notably different from that of cob(II)alamin, with the dimethylbenzimidazole tail tucked under the corrin ring, displacing the N terminus of ATR, which is disordered. In this solvent-exposed conformation, AdoCbl undergoes facile transfer to MCM. The importance of the tail in cofactor handover from ATR to MCM is revealed by the failure of 5'-deoxyadenosylcobinamide, lacking the tail, to transfer. In the absence of MCM, ATR induces a sacrificial cobalt-carbon bond homolysis reaction in an unusual reversal of the heterolytic chemistry that was deployed to make the same bond. The data support an important role for the dimethylbenzimidazole tail in moving the cobalamin cofactor between active sites.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7720225 | PMC |
http://dx.doi.org/10.1073/pnas.2007332117 | DOI Listing |
Acc Chem Res
April 2021
Department of Biological Chemistry, Michigan Medicine, University of Michigan, Ann Arbor, Michigan 48109, United States.
Metals are partners for an estimated one-third of the proteome and vary in complexity from mononuclear centers to organometallic cofactors. Vitamin B or cobalamin represents the epitome of this complexity and is the product of an assembly line comprising some 30 enzymes. Unable to biosynthesize cobalamin, mammals rely on dietary provision of this essential cofactor, which is needed by just two enzymes, one each in the cytoplasm (methionine synthase) and the mitochondrion (methylmalonyl-CoA mutase).
View Article and Find Full Text PDFProc Natl Acad Sci U S A
December 2020
Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109-0600;
Cobalamin is a complex organometallic cofactor that is processed and targeted via a network of chaperones to its dependent enzymes. AdoCbl (5'-deoxyadenosylcobalamin) is synthesized from cob(II)alamin in a reductive adenosylation reaction catalyzed by adenosyltransferase (ATR), which also serves as an escort, delivering AdoCbl to methylmalonyl-CoA mutase (MCM). The mechanism by which ATR signals that its cofactor cargo is ready (AdoCbl) or not [cob(II)alamin] for transfer to MCM, is not known.
View Article and Find Full Text PDFNature
March 2007
Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA.
Vitamin B12 (cobalamin) is among the largest known non-polymeric natural products, and the only vitamin synthesized exclusively by microorganisms. The biosynthesis of the lower ligand of vitamin B(12), 5,6-dimethylbenzimidazole (DMB), is poorly understood. Recently, we discovered that a Sinorhizobium meliloti gene, bluB, is necessary for DMB biosynthesis.
View Article and Find Full Text PDFJ Biol Chem
May 2002
Department of Biochemistry, University of Nebraska, Lincoln, Nebraska 68588-0664, USA.
Methylmalonyl-CoA mutase is an adenosylcobalamin (AdoCbl)-dependent enzyme that catalyzes the rearrangement of methylmalonyl-CoA to succinyl-CoA. The crystal structure of this protein revealed that binding of the cofactor is accompanied by a significant conformational change in which dimethylbenzimidazole, the lower axial ligand to the cobalt in solution, is replaced by His-610 donated by the active site. The contribution of the lower axial base to the approximately 10(12)-fold rate acceleration of the homolytic cleavage of the upper axial cobalt-carbon bond has been the subject of intense scrutiny in the model inorganic literature.
View Article and Find Full Text PDFBiochemistry
November 1999
Department of Biochemistry, University of Nebraska, Lincoln 68588-0664, USA.
The recent structures of cobalamin-dependent methionine synthase and methylmalonyl-CoA mutase have revealed a striking conformational change that accompanies cofactor binding to these proteins. Alkylcobalamins have octahedral geometry in solution at physiological pH, and the lower axial coordination position is occupied by the nucleotide, dimethylbenzimidazole ribose phosphate, that is attached to one of the pyrrole rings of the corrin macrocycle via an aminopropanol moiety. In contrast, in the active sites of these two B12-dependent enzymes, the nucleotide tail is held in an extended conformation in which the base is far removed from the cobalt in cobalamin.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!