During the transition from pluripotency to a lineage-committed state, chromatin undergoes large-scale changes in structure, involving covalent modification of histone tails, use of histone variants and gene position changes with respect to the nuclear periphery. Here, using high-resolution microscopy and quantitative image analysis, we surveyed a panel of histone modifications for changes in nuclear peripheral enrichment during differentiation of human embryonic stem cells to a trophoblast-like lineage. We found two dynamic modifications at the nuclear periphery, acetylation of histone H2A.Z (H2A.Zac), and dimethylation of histone H3 at lysine 9 (H3K9me2). We demonstrate successive peripheral enrichment of these markers, with H2A.Zac followed by H3K9me2, over the course of 4 days. We find that H3K9me2 increases concomitantly with, but independently of, expression of lamin A, since deletion of lamin A did not affect H3K9me2 enrichment. We further show that inhibition of histone deacetylases causes persistent and increased H2A.Z acetylation at the periphery, delayed H3K9me2 enrichment and failure to differentiate. Our results show a concerted change in the nature of peripheral chromatin occurs upon differentiation into the trophoblast state.

Download full-text PDF

Source
http://dx.doi.org/10.1242/jcs.245282DOI Listing

Publication Analysis

Top Keywords

peripheral enrichment
12
h2azac h3k9me2
8
differentiation human
8
human embryonic
8
embryonic stem
8
stem cells
8
nuclear periphery
8
h3k9me2 enrichment
8
h3k9me2
6
histone
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!