We recently reported that cigarette sidestream smoke (CSS) induced inhibition of nucleotide excision repair (NER) and the cause was NER molecule degradation by aldehydes contained in CSS [Carcinogenesis39, 56-65, 2018; Mutat. Res.834, 42-50, 2018]. In this study, we examined the relationship between intracellular glutathione (GSH) levels and CSS-induced NER inhibition. CSS treatment decreased the intracellular GSH level in human keratinocytes HaCaT, in which the repair of pyrimidine (6-4) pyrimidone photoproducts (6-4PPs) after UVB irradiation was suppressed. We used l-buthionine-(S,R)-sulfoximine (BSO) to artificially deplete intracellular GSH level. BSO treatment remarkably accelerated the CSS-induced NER inhibition. The NER inhibition by CSS was attributed to the delay of accumulation of NER molecules (TFIIH and XPG) to DNA damaged sites, which was further enhanced by BSO treatment. CSS degraded TFIIH, and BSO promoted it as expected. Formaldehyde (FA), a major constituent of CSS, showed similar intracellular GSH reduction and NER inhibition, and BSO promoted its inhibitory effect. Five cultured cell lines showed considerable variability in intrinsic GSH levels, and CSS-induced NER inhibitory effect was significantly correlated with the GSH levels. Chemicals like aldehydes are known to react not only with proteins but also with DNA, causing DNA lesions targeted by NER. Our results suggest that the tissues and cells with low intrinsic GSH levels are susceptible to treatment with CSS and electrophilic compounds like aldehydes through NER inhibition, thus leading to higher genotoxicity and carcinogenicity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.mrgentox.2020.503273 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!