Background: One of the major challenges in obesity treatment is to explain the high variability in the individual's response to specific dietary and physical activity interventions. With this study, we tested the hypothesis that specific DNA methylation changes reflect individual responsiveness to lifestyle intervention and may serve as epigenetic predictors for a successful weight-loss.

Methods: We conducted an explorative genome-wide DNA methylation analysis in blood samples from 120 subjects (90% men, mean ± SD age = 49 ± 9 years, body mass-index (BMI) = 30.2 ± 3.3 kg/m) from the 18-month CENTRAL randomized controlled trial who underwent either Mediterranean/low-carbohydrate or low-fat diet with or without physical activity.

Results: Analyses comparing male subjects with the most prominent body weight-loss (responders, mean weight change - 16%) vs. non-responders (+ 2.4%) (N = 10 each) revealed significant variation in DNA methylation of several genes including LRRC27, CRISP2, and SLFN12 (all adj. P < 1 × 10). Gene ontology analysis indicated that biological processes such as cell adhesion and molecular functions such as calcium ion binding could have an important role in determining the success of interventional therapies in obesity. Epigenome-wide association for relative weight-loss (%) identified 15 CpGs being negatively correlated with weight change after intervention (all combined P < 1 × 10) including new and also known obesity candidates such as NUDT3 and NCOR2. A baseline DNA methylation score better predicted successful weight-loss [area under the curve (AUC) receiver operating characteristic (ROC) = 0.95-1.0] than predictors such as age and BMI (AUC ROC = 0.56).

Conclusions: Body weight-loss following 18-month lifestyle intervention is associated with specific methylation signatures. Moreover, methylation differences in the identified genes could serve as prognostic biomarkers to predict a successful weight-loss therapy and thus contribute to advances in patient-tailored obesity treatment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7670623PMC
http://dx.doi.org/10.1186/s13073-020-00794-7DOI Listing

Publication Analysis

Top Keywords

dna methylation
16
dna
4
methylation signature
4
signature blood
4
blood mirrors
4
mirrors successful
4
successful weight-loss
4
weight-loss lifestyle
4
lifestyle interventions
4
interventions central
4

Similar Publications

Background: Idiopathic pulmonary fibrosis (IPF) is a fibrotic disease driven by both environmental and genetic factors. Epigenetics refers to changes in gene expression or cellular phenotype that do not involve alterations to DNA sequence. KMT2A is a member of the SET family which catalyses H3K4 methylation.

View Article and Find Full Text PDF

Epigenetic Impacts of Non-Coding Mutations Deciphered Through Pre-Trained DNA Language Model at Single-Cell Resolution.

Adv Sci (Weinh)

January 2025

Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200230, China.

DNA methylation plays a critical role in gene regulation, affecting cellular differentiation and disease progression, particularly in non-coding regions. However, predicting the epigenetic consequences of non-coding mutations at single-cell resolution remains a challenge. Existing tools have limited prediction capacity and struggle to capture dynamic, cell-type-specific regulatory changes that are crucial for understanding disease mechanisms.

View Article and Find Full Text PDF

Accessible and non-invasive biomarkers that measure human ageing processes and the risk of developing age-related disease are paramount in preventative healthcare. Here, we describe a novel framework to train saliva-based DNA methylation (DNAm) biomarkers that are reproducible and biologically interpretable. By leveraging a reliability dataset with replicates across tissues, we demonstrate that it is possible to transfer knowledge from blood DNAm to saliva DNAm data using DNAm proxies of blood proteins (EpiScores).

View Article and Find Full Text PDF

Rice (Oryza sativa L.) subspecies japonica and indica show distinct morphological and genetic differentiation. However, the differences in the genome-wide DNA methylation and its effects on gene expression and metabolic levels between japonica and indica rice remain unclear.

View Article and Find Full Text PDF

Purpose: Non-invasive prognostic biomarkers to inform clinical decision-making are an urgent unmet need for the management of patients with glioblastoma (GBM). We previously showed that higher circulating cell-free DNA concentration [ccfDNA] is associated with worse survival in GBM. However, the biology underlying this is unknown.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!