BiSe is a well-established topological insulator (TI) having spin momentum locked Dirac surface states at room temperature and predicted to exhibit high spin to charge conversion efficiency (SCCE) for spintronics applications. The SCCE in TIs is characterized by an inverse Edelstein effect length (λ). We report an λ of ∼0.36 nm, which is the highest ever observed in BiSe. Here, we performed spin pumping and inverse spin Hall effect (ISHE) in an electron beam-evaporated BiSe/CoFeB bilayer. The BiSe thickness dependence of λ, perpendicular surface anisotropy (), spin mixing conductance, and spin Hall angle confirmed that spin to charge conversion is due to spin momentum locked Dirac surface states. We propose that the role of surface states in SCCE can be understood by the evaluation of . The SCCE is found to be high when the value of is small.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.0c13540 | DOI Listing |
J Chem Phys
January 2025
Voevodsky Institute of Chemical Kinetics and Combustion of Siberian Branch of Russian Academy of Sciences, Institutskaya 3, 630090 Novosibirsk, Russia.
We developed a technique allowing the direct observation of photoinduced charge-transfer states (CTSs)-the weakly coupled electron-hole pairs preceding the completely separated charges in organic photovoltaic (OPV) blends. Quadrature detection of the electron spin echo (ESE) signal enables the observation of an out-of-phase ESE signal of CTS. The out-of-phase Electron-Electron Double Resonance (ELDOR) allows measuring electron-hole distance distributions within CTS and its temporal evolution in the microsecond range.
View Article and Find Full Text PDFNanoscale
January 2025
School of Chemical Engineering, Yeungnam University, Gyeongsan, 38541, South Korea.
Eliminating hazardous antibiotics from aquatic environments has become a major concern in recent years. Tetracycline (TC) compounds pose a challenge for the selective degradation of harmful chemical groups. In this study, we successfully designed carbon vacancies in a gCN@WC (GW) heterostructure for the effective removal of TC pollutants under visible light.
View Article and Find Full Text PDFAdv Mater
January 2025
Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, Republic of Korea.
Interstitial quasi-atomic electrons (IQEs) in the quantized energy levels of positively charged cavities possess a substantial own magnetic moment and control the magnetism of crystalline electrides depending on the interaction with surrounding cations. However, weak spin-orbit coupling and gentle exchange interaction restricted by the IQEs preclude a large magnetic anisotropic, remaining a challenge for a hard magnetism. It is reported that 2D [ReC]·2e electrides (Re = Er, Ho, Dy, and Tb) show the permanent magnetism in a ferrimagnetic ground state, mimicking the ferrites composed of magnetic sublattices with different spin polarizations.
View Article and Find Full Text PDFNature
January 2025
Max-Planck-Institut für Quantenoptik, Garching, Germany.
The relation between d-wave superconductivity and stripes is fundamental to the understanding of ordered phases in high-temperature cuprate superconductors. These phases can be strongly influenced by anisotropic couplings, leading to higher critical temperatures, as emphasized by the recent discovery of superconductivity in nickelates. Quantum simulators with ultracold atoms provide a versatile platform to engineer such couplings and to observe emergent structures in real space with single-particle resolution.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Beijing Key Laboratory of Theory and Technology for Advanced Batteries Materials, School of Materials Science and Engineering, Peking University, Beijing 100871, P. R. China.
Anion dimerization poses a significant challenge for the application of Li-rich cathode materials (LCMs) in high-energy-density Li-ion batteries because of its deleterious effects, including rapid capacity and voltage decay, sluggish reaction kinetics, and large voltage hysteresis. Herein, we propose a metal-ligand spin-lock strategy to inhibit anion dimerization, which involves introducing an Fe-Ni couple having antiferromagnetic superexchange interaction into the LCM to lock the spin orientations of the unpaired electrons in the anions in the same direction. As proof of concept, we applied this strategy to intralayer disordered LiTiS (ID-LTS) to inhibit S-S dimerization.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!