Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related deaths worldwide, with its mortality rate correlated with the tumor staging; i.e., early detection and treatment are important factors for the survival rate of patients. This paper presents the development of a novel visualization and detection system for HCC, which is a composing module of a robotic system for the targeted treatment of HCC. The system has two modules, one for the tumor visualization that uses image fusion (IF) between computerized tomography (CT) obtained preoperatively and real-time ultrasound (US), and the second module for HCC automatic detection from CT images. Convolutional neural networks (CNN) are used for the tumor segmentation which were trained using 152 contrast-enhanced CT images. Probabilistic maps are shown as well as 3D representation of HCC within the liver tissue. The development of the visualization and detection system represents a milestone in testing the feasibility of a novel robotic system in the targeted treatment of HCC. Further optimizations are planned for the tumor visualization and detection system with the aim of introducing more relevant functions and increase its accuracy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7697343PMC
http://dx.doi.org/10.3390/biology9110397DOI Listing

Publication Analysis

Top Keywords

visualization detection
12
detection system
12
image fusion
8
hepatocellular carcinoma
8
robotic system
8
system targeted
8
targeted treatment
8
treatment hcc
8
tumor visualization
8
hcc
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!