In this paper, we propose an interlayer exchange coupling (IEC) based 3D universal NAND/NOR gate design methodology for the reliable and robust implementation of nanomagnetic logic design as compared to the state-of-the art architectures. Owing to stronger coupling scheme as compared to the conventional dipole coupling, the random flip of the states of the nanomagnets (i.e. the soft error) is reduced resulting in greater scalability and better data retention at the deep sub-micron level. Results obtained from Object Oriented Micromagnetic Framework micromagnetic simulation show even at a Curie temperature of the nanomagnets coupled through IEC, the logic function works properly as opposed to dipole coupled nanomagnets which fails at 5 K when scaled down to sub 50 nm. Contemplating the fabrication challenges, the robustness of the IEC design was studied for structural defects, positional misalignment, shape, and size variations. This proposed 3D universal gate design methodology benefits from the miniaturization of nanomagnets as well as reduces the effect of thermally induced errors resulting in opening up a new perspective for nanomagnet based design in magneto-logic devices.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/1361-6528/abcac9 | DOI Listing |
J Am Chem Soc
January 2025
State Key Laboratory of Precision and Intelligent Chemistry, CAS Key Laboratory of Mechanical Behavior and Design of Materials, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China.
Recent progress in superconductor-insulator transition has shed light on the intermediate metallic state with unique electronic inhomogeneity. The microscopic model, suggesting that carrier spatial distribution plays a decisive role in the intermediate state, has been instrumental in understanding the quantum transition. However, the narrow carrier density window in which the intermediate state exists necessitates precise control of the gate dielectric layer, presenting a challenge to in situ map the carrier spatial distribution.
View Article and Find Full Text PDFGreen Chem
January 2025
Advanced Materials Research Group, Faculty of Engineering, University of Nottingham Nottingham NG7 2RD UK.
Development of sustainable synthesis methods of organic electrode materials (OEMs) for sodium (Na)-ion batteries must take hold rapidly in large scale-synthesis if subsequent commercialisation is to occur. We report a facile and rapid gram-scale synthesis method based on microwave irradiation for disodium naphthalene-2,6-dicarboxylate (Na-NDC) and mono/disodium benzene-1,4-dicarboxylate (Na-BDC) as model compounds. Phase purity and formation of materials was confirmed by various characterisation techniques.
View Article and Find Full Text PDFRev Sci Instrum
January 2025
Key Laboratory of Polar Materials and Devices (MOE), School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China.
Increasing the degree of freedom for quantum entanglement within tensor networks can enhance the depiction of the essence in many-body systems. However, this enhancement comes with a significant increase in computational complexity and critical slowing down, which drastically increases time consumption. This work converts a quantum tensor network algorithm into a classical circuit on the Field Programmable Gate Arrays (FPGAs) and arranges the computing unit with a dense parallel design, efficiently optimizing the time consumption.
View Article and Find Full Text PDFNano Lett
January 2025
IBM Research─Zurich, Säumerstrasse 4, 8803 Rüschlikon, Switzerland.
The inhomogeneous magnetic stray field of micromagnets has been extensively used to manipulate electron spin qubits. By means of micromagnetic simulations and scanning superconducting quantum interference device microscopy, we show that the polycrystallinity of the magnet and nonuniform magnetization significantly impact the stray field and corresponding qubit properties. The random orientation of the crystal axis in polycrystalline Co magnets alters the qubit frequencies by up to 0.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Technical Center for Multifunctional Magneto-Optical Spectroscopy (Shanghai), Engineering Research Center of Nanophotonics & Advanced Instrument (Ministry of Education), Department of Physics, School of Physics and Electronic Science, East China Normal University, Shanghai, 200241, China.
Controlling polarization states of ferroelectrics can enrich optoelectronic properties and functions, offering a new avenue for designing advanced electronic and optoelectronic devices. Here, ferroelectric semiconductor-based field-effect transistors (FeSFETs) are fabricated, where the channel is a ferroelectric semiconductor (e.g.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!