Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Pancreatic cancer (PC) is a severe disease with the highest mortality rate among various cancers. It is urgent to find an effective and accurate way to predict the survival of PC patients. Gene set variation analysis (GSVA) was used to establish and validate a miRNA set-based pathway prognostic signature for PC (miPPSPC) and a mRNA set-based pathway prognostic signature for PC (mPPSPC) in independent datasets. An optimized miPPSPC was constructed by combining clinical parameters. The miPPSPC, optimized miPPSPC and mPPSPC were established and validated to predict the survival of PC patients and showed excellent predictive ability. Four metabolic pathways and one oxidative stress pathway were identified in the miPPSPC, whereas linoleic acid metabolism and the pentose phosphate pathway were identified in the mPPSPC. Key factors of the pentose phosphate pathway and linoleic acid metabolism, G6PD and CYP2C8/9/18/19, respectively, are related to the survival of PC patients according to our tissue microarray. Thus, the miPPSPC, optimized miPPSPC and mPPSPC can predict the survival of PC patients efficiently and precisely. The metabolic and oxidative stress pathways may participate in PC progression.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7746356 | PMC |
http://dx.doi.org/10.18632/aging.103965 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!