In many acidic soils, high concentrations of toxic Al hamper plant growth by restricting root growth which in turn restricts water and nutrient absorption. Previous research showed variation among chickpea (Cicer arietinum L.) and wild Cicer species in root elongation at 15 μM Al or more, but effects on nutrient absorption have not been examined. The variation in nutrient uptake of two chickpea varieties (PBA HatTrick and PBA Striker) and two wild Cicer species (C. echinospermum (C. echi) and C. reticulatum (C. reti)) was determined in low pH (4.2) nutrient solution with increasing Al concentrations (0, 7.5, 15, 30 μM Al). While C. echi, PBA HatTrick and PBA Striker had thicker roots and more lateral roots compared to C. reti, C. reti had greater aluminium tolerance index (AlTI) at 15 and 30 μM Al. The C. echi had higher uptake of root and shoot Al (7.5, 15 and 30 μM Al), P and S (15 and 30 μM Al) while its uptake was marginally lower for Mg, Ca (all Al treatments) and K (15 and 30 μM Al). By contrast, C. reti contained higher shoot Ca concentration at 15 and 30 μM Al and it had lower root Al uptake. Manganese uptake by C. reti roots and shoots were high enough to induce moderate Mn toxicity at 0 and 7.5 μM Al. Therefore, in response to Al toxicity, C. reti maintained greater AlTI and restricted Al uptake while increasing Ca uptake.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.plaphy.2020.10.034 | DOI Listing |
Front Nutr
October 2024
USDA-ARS Plant Germplasm Introduction and Testing, Washington State University, Pullman, WA, United States.
Chickpeas are a highly versatile functional food legume that possesses the capacity to boost human health and has the potential to alleviate malnutrition-related deficiencies. To investigate whole seed-based nutritional and anti-nutritional composition, a set of 90 chickpea genotypes (66 desi and 24 kabuli) was collected from different research organizations in Pakistan. Significant variation (Tukey HSD test, < 0.
View Article and Find Full Text PDFFront Plant Sci
September 2024
Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, India.
Inter-specific hybridization is a key strategy in modern crop improvement, aiming to integrate desirable traits from wild species into cultivated backgrounds. This study delves into the evaluation and identification of advanced inter-specific derivatives (IDs) derived from crosses of cultivated chickpea with and . The primary aim was to incorporate desirable yield enhancement traits, disease resistance, and nutritional quality traits into cultivated chickpea.
View Article and Find Full Text PDFPhysiol Plant
July 2024
Waite Research Institute, School of Agriculture, Food and Wine, University of Adelaide, SA, Australia.
Phytophthora root rot (PRR), caused by Phytophthora medicaginis, is a major soil-borne disease of chickpea in Australia. Breeding for PRR resistance is an effective approach to avoid significant yield loss. Genetic resistance has been identified in cultivated chickpea (Cicer arietinum) and in the wild relative C.
View Article and Find Full Text PDFGenes (Basel)
June 2024
Department of Field Crops, Harran University, Sanliurfa 63100, Türkiye.
Chickpea () is a major food legume providing high quality nutrition, especially in developing regions. Chickpea wilt ( f. sp.
View Article and Find Full Text PDFFood Chem
November 2024
Food Rheology Laboratory, Department of Food, Bioprocessing and Nutrition Sciences Department, North Carolina State University, Raleigh, NC 27695, USA. Electronic address:
The phytochemical composition and physicochemical attributes of polyphenol-enriched protein particle ingredients produced with pulse proteins (e.g. chickpea protein, pea protein, and a chickpea-pea protein blend) and polyphenols recovered from wild blueberry pomace were investigated for colloidal and interfacial properties.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!