Most chemical warfare agents partition rapidly into stratum corneum (SC) and subsequently slowly diffuse through - or are retained in the membrane. Since chemicals can interact with SC components during the process, skin decontamination poses a challenging yet important problem. To address these issues, we have developed a new method in combination with wet and dry decon technologies with new materials for emergency or delayed contamination scenarios. An in vitro human skin diffusion system was employed to model various dermal exposures of radiolabeled chemical warfare simulants, followed by surface decontamination with metal organic frameworks (MOFs), super-absorbent polymers (SAP), and/or dermal decontamination gel (DDGel). All samples measured for radioactive recovery and acetylcholinesterase activity to ascertain relative decon efficacy. Results demonstrated powerful water absorption of SAP, strong catalysis of UiO-66 MOF, and decon enhancement of pre-wetting surface contaminants. SAP had no interfering interactions with MOF yet provided additional benefits as porosity and reactivity that allowed for fast liquidized chemical transportation, absorption, and degeneration. We then designed a cotton-based SAP/MOF patch that worked cooperatively in decontamination and detoxification. Together with pre-wet, SAP/MOF wipe, and DDGel applications, maximum effect was observed in early and/or extended dermal exposure, and no "wash-in" effect occurred.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.toxlet.2020.11.004 | DOI Listing |
J Extracell Vesicles
January 2025
Department of Internal Medicine and Clinical Nutrition, Krefting Research Centre, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
Extracellular vesicles (EVs) can be isolated and purified from cell cultures and biofluids using different methodologies. Here, we explored a novel EV isolation approach by combining superabsorbent polymers (SAP) in a dialysis membrane with size exclusion chromatography (SEC) to achieve high concentration and purity of EVs without the use of ultracentrifugation (UC). Suspension HEK293 cells transfected with CD63 coupled with Thermo Luciferase were used to quantify the EV yield and purity.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong 999077, China.
To achieve accurate monitoring of water leakage in tunnels, a new vertical graphene sensor is designed and developed. The sensor operates on the principle that the superabsorbent polymer (SAP) swells dramatically upon water absorption. This swelling induces deformation in the vertical graphene (VG) thin film, highly sensitive to such changes.
View Article and Find Full Text PDFGels
December 2024
Biophysics and Biotechnology Department, Voronezh State University, 1 Universitetskaya Square, 394018 Voronezh, Russia.
Carboxymethyl cellulose sodium salt (CMC)-based superabsorbents are promising materials for the development of agricultural matrices aimed at water management and slow-release fertilizer production. However, an increase in the CMC content tends to reduce their water-absorbing capacity. This study aims to develop a cost-effective method for producing eco-friendly superabsorbents with enhanced water-absorbing capacity by incorporating a porogen and employing lyophilization.
View Article and Find Full Text PDFAm J Emerg Med
December 2024
Department of Emergency Medicine, Division of Clinical Toxicology, Virginia Commonwealth University Health System, Richmond, VA, USA.
Background: Superabsorbent polymers (SAPs) are hydrophilic polymers that expand many-fold from their original size after contact with water. Ingestions of "water beads" by young children have been reported to cause bowel obstruction however, the incidence of bowel obstructions is unknown.
Methods: We conducted a retrospective study analyzing ingestions reported to our regional poison center from January 1, 2002 to April 25, 2023.
Polymers (Basel)
November 2024
Department of Packaging and Materials Technology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatuchak, Bangkok 10900, Thailand.
The development of biodegradable active packaging is a relevant topic demanding the development of film properties, biodegradability, and the potential to preserve food quality. This study aimed to develop thermoplastic starch (TPS) blended with polybutylene adipate-co-terephthalate (PBAT) films via blown-film extrusion containing ascorbyl palmitate (AP) and sodium ascorbyl phosphate (SAP) as antioxidants. The morphology, mechanism, and barrier and antioxidant properties of the films were analyzed to determine the presence of AP, SAP, and their interaction effect on the film properties.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!