Biomedical engineering approaches to enhance therapeutic delivery for malignant glioma.

J Control Release

Children's Brain Tumour Research Centre, Biodiscovery Institute, School of Medicine, University of Nottingham, NG7 2RD, UK. Electronic address:

Published: December 2020

AI Article Synopsis

  • * It highlights the need for improved drug delivery systems to tackle issues like glioma's intra-tumor heterogeneity and discusses current successes and failures in various techniques, such as receptor-targeted and MRI-guided therapies.
  • * Localized delivery methods, including novel technologies like polymeric hydrogels and nano-scale systems, are noted as promising areas of research, aiming to improve patient outcomes in neuro-oncology trials.

Article Abstract

We review the challenges of next-generation therapeutics for both systemic and localised delivery to brain tumours and discuss how recent engineering advances may be used to enhance brain penetration of systemic delivery therapies. The unmet clinical need which drug delivery seeks to address is discussed with reference to the therapy obstacles that the intra-tumour heterogeneity of glioma present. The unmet chemistry and biomedical engineering challenge to develop controlled release therapeutics is appraised, with commentary on current success/failures in systemic carrier-mediated delivery, including receptor-targeted, cell-based, blood-brain-barrier disrupting and MRI-guided focused ultrasound. Localised therapeutic delivery is a relatively under-studied research avenue and is discussed with reference to existing technologies in preclinical development. These include convection-enhanced delivery, alternative catheter delivery, and neuro-surgically applied delivery systems such as polymeric hydrogels and interstitial spray. A myriad of nano-scale therapeutic delivery systems is emerging as potential future medicines for malignant brain tumours. Such biomedically-engineered systems will increasingly feature in next-generation neuro-oncological clinical trials to deliver repurposed and experimental therapeutics, aimed at achieving therapeutic drug concentrations in the brain, with associated mortality and morbidity benefits for patients.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jconrel.2020.11.022DOI Listing

Publication Analysis

Top Keywords

therapeutic delivery
12
delivery
10
biomedical engineering
8
brain tumours
8
discussed reference
8
delivery systems
8
engineering approaches
4
approaches enhance
4
therapeutic
4
enhance therapeutic
4

Similar Publications

Tissue nanotransfection-based endothelial PLCγ2-targeted epigenetic gene editing in vivo rescues perfusion and diabetic ischemic wound healing.

Mol Ther

January 2025

Department of Surgery, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, United States; Department of Surgery, Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN 46202, United States. Electronic address:

Diabetic wounds are complicated by underlying peripheral vasculopathy. Reliance on vascular endothelial growth factor (VEGF) therapy to improve perfusion makes logical sense, yet clinical study outcomes on rescuing diabetic wound vascularization have yielded disappointing results. Our previous work has identified that low endothelial phospholipase Cγ2 (PLCγ2) expression hinders the therapeutic effect of VEGF on the diabetic ischemic limb.

View Article and Find Full Text PDF

Background: Gestational diabetes mellitus is hyperglycemia in special populations (pregnant women), however gestational diabetes mellitus (GDM) not only affects maternal health, but also has profound effects on offspring health. The prevalence of gestational diabetes in my country is gradually increasing.

Objective: To study the application effect of self-transcendence nursing model in GDM patients.

View Article and Find Full Text PDF

Pathogenic intracellular bacteria pose a significant threat to global public health due to the barriers presented by host cells hindering the timely detection of hidden bacteria and the effective delivery of therapeutic agents. To address these challenges, we propose a tandem diagnosis-guided treatment paradigm. A supramolecular sensor array is developed for simple, rapid, accurate, and high-throughput identification of intracellular bacteria.

View Article and Find Full Text PDF

Non-medicinal oral contrast in upper abdominal MRI for MR-guided radiotherapy: A scoping review.

Radiography (Lond)

January 2025

Radiotherapy, Leeds Cancer Centre, Leeds Teaching Hospitals NHS Trust, UK; Leeds Institute of Medical Research, University of Leeds, Leeds, UK; NIHR Leeds Biomedical Research Centre, Leeds, UK.

Introduction: Using non-medicinal oral contrast agents may aid safe delivery of magnetic resonance image-guided (MR-guided) radiotherapy by improving the ability to visualise and avoid excessive radiation dose to adjacent bowel/stomach. This scoping review aims to map the literature on non-medicinal oral contrasts used in upper-abdominal diagnostic or therapeutic magnetic resonance imaging (MRI) to find potential candidates for employing in MR-guided radiotherapy and identify gaps in knowledge for further study.

Methods: A scoping review of non-medicinal oral contrast used in upper-abdominal MRI research followed a pre-defined protocol based on Arksey and O'Malley's framework.

View Article and Find Full Text PDF

T cell lymphoma constitutes a complex group of diseases, characterized by heterogeneous molecular features and clinical symptoms, and a dismal outcome no matter the therapeutic strategy chosen. In an attempt to improve patients' survival chances, treatment combinations (chemotherapy, radiotherapy, immunotherapy, gene therapy and thermotherapy) have been tested for their synergistic effects that may dramatically improve outcomes and reduce the side effects of each single modality treatment when therapeutic effects add up while side effects are distributed. In this context, nanoscale drug delivery agents have been developed and exploited to enhance the release of drugs in the treatment of several diseases, showing potential benefits in terms of pharmaceutical flexibility, selectivity, dose reduction and minimization of adverse effects.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!