Purpose: The implementation and utilization of electronic health records is generating a large volume and variety of data, which are difficult to process using traditional techniques. However, these data could help answer important questions in cancer surveillance and epidemiology research. Artificial intelligence (AI) data processing methods are capable of evaluating large volumes of data, yet current literature on their use in this context of pharmacy informatics is not well characterized.

Methods: A systematic literature review was conducted to evaluate relevant publications within four domains (cancer, pharmacy, AI methods, population science) across PubMed, EMBASE, Scopus, and the Cochrane Library and included all publications indexed between July 17, 2008, and December 31, 2018. The search returned 3,271 publications, which were evaluated for inclusion.

Results: There were 36 studies that met criteria for full-text abstraction. Of those, only 45% specifically identified the pharmacy data source, and 55% specified drug agents or drug classes. Multiple AI methods were used; 25% used machine learning (ML), 67% used natural language processing (NLP), and 8% combined ML and NLP.

Conclusion: This review demonstrates that the application of AI data methods for pharmacy informatics and cancer epidemiology research is expanding. However, the data sources and representations are often missing, challenging study replicability. In addition, there is no consistent format for reporting results, and one of the preferred metrics, F-score, is often missing. There is a resultant need for greater transparency of original data sources and performance of AI methods with pharmacy data to improve the translation of these results into meaningful outcomes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7846043PMC
http://dx.doi.org/10.1200/CCI.20.00101DOI Listing

Publication Analysis

Top Keywords

methods pharmacy
12
pharmacy data
12
data
10
artificial intelligence
8
cancer surveillance
8
surveillance epidemiology
8
pharmacy informatics
8
data sources
8
methods
6
pharmacy
6

Similar Publications

Enhanced safety and efficacy profile of CD40 antibody upon encapsulation in pHe-triggered membrane-adhesive nanoliposomes.

Nanomedicine (Lond)

January 2025

Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA.

Aim: To develop pH (pHe)-triggered membrane adhesive nanoliposome (pHTANL) of CD40a to enhance anti-tumor activity in pancreatic cancer while reducing systemic toxicity.

Materials And Methods: A small library of nanoliposomes (NL) with various lipid compositions were synthesized to prepare pH (pHe)-triggered membrane adhesive nanoliposome (pHTANL). Physical and functional characterization of pHTANL-CD40a was performed via dynamic light scattering (DLS), Transmission Electron Microscopy (TEM), confocal microscopy, and flow cytometry.

View Article and Find Full Text PDF

Introduction: The pursuit of linear dosage in pharmacy is essential for achieving consistent therapeutic release and enhancing patient compliance. This review provides a comprehensive summary of zero-order drug delivery systems, with a particular focus on reservoir-based systems emanated from different microfabrication technologies.

Areas Covered: The consideration of recent advances in drug delivery systems is given to encompass the key areas including the importance of achieving a constant drug release rate for therapeutic applications.

View Article and Find Full Text PDF

Technological advances in clinical individualized medication for cancer therapy: from genes to whole organism.

Per Med

January 2025

Department of Clinical Pharmacy, Zhejiang Provincial Key Laboratory for Drug Evaluation and Clinical Research, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.

Efforts have been made to leverage technology to accurately identify tumor characteristics and predict how each cancer patient may respond to medications. This involves collecting data from various sources such as genomic data, histological information, functional drug profiling, and drug metabolism using techniques like polymerase chain reaction, sanger sequencing, next-generation sequencing, fluorescence in situ hybridization, immunohistochemistry staining, patient-derived tumor xenograft models, patient-derived organoid models, and therapeutic drug monitoring. The utilization of diverse detection technologies in clinical practice has made "individualized treatment" possible, but the desired level of accuracy has not been fully attained yet.

View Article and Find Full Text PDF

Association of smartphone overuse and neck pain: a systematic review and meta-analysis.

Postgrad Med J

January 2025

Department of Orthopedics, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan.

Background: Smartphone overuse is associated with both psychological and physical health problems, including depression and musculoskeletal disorders. However, the association between smartphone overuse and neck pain remains unclear. We performed a meta-analysis to examine the relation between smartphone overuse and neck pain, and to identify high-risk usage patterns.

View Article and Find Full Text PDF

Background: Ischemic stroke is a prevalent and life-threatening cerebrovascular disease that is challenging to treat and associated with a poor prognosis. Astragaloside IV (AS-IV), a primary bioactive component of Astragali radix, has demonstrated neuroprotective benefits in previous studies. This study aimed to explore the mechanisms through which AS-IV may treat cerebral ischemia-reperfusion injury (CIRI).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!