The black matter employed in the funeral context by ancient Egyptians is a complex mixture of plant-based compounds with variable amounts of bitumen. Asphaltene, the most resistant component of bitumen, contains vanadyl porphyrins and carbonaceous radicals, which can be used as paramagnetic probes to investigate embalming materials without sample preparation. Electron paramagnetic resonance (EPR) at the X-band, combining in-phase and out-of-phase detection schemes, provides new information in a nondestructive way about the presence, the origin, and the evolution of bitumen in these complex materials. It is found that the relative EPR intensity of radicals and vanadyl porphyrins is sensitive to the origin of the bitumen. The presence of nonporphyrinic vanadyl complexes in historical samples is likely due to the complexation of VO ions by carboxylic functions at the interface between bitumen and other biological components of the embalming matter. The absence of such oxygenated vanadyl complex in natural bitumen and in one case of historical human mummy acquired by a museum in the 19th century reveals a possible, nondocumented, ancient restoration of this mummy by pure bitumen. The linear correlation between in-phase and out-of-phase EPR intensities of radicals and vanadyl porphyrins in balms and in natural bitumen reveals a nanostructuration of radicals and vanadyl porphyrin complexes, which was not affected by the preparation of the balm. This points to the remarkable chemical stability of paramagnetic probes in historical bitumen in ancient Egypt.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.analchem.0c03116DOI Listing

Publication Analysis

Top Keywords

vanadyl porphyrins
12
radicals vanadyl
12
bitumen
10
ancient egypt
8
paramagnetic probes
8
in-phase out-of-phase
8
natural bitumen
8
vanadyl
7
nondestructive analysis
4
analysis mummification
4

Similar Publications

Localized Nanoscale Formation of Vanadyl Porphyrin 2D MOF Nanosheets and Their Optimal Coupling to Lumped Element Superconducting Resonators.

J Phys Chem C Nanomater Interfaces

January 2025

Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC - Universidad de Zaragoza, Plaza San Francisco s/n, Zaragoza 50009, Spain.

A strategy toward the realization of a quantum spin processor involves the coupling of spin qubits and qudits to photons within superconducting resonators. To enable the realization of such hybrid architecture, here we first explore the design of a chip with multiple lumped-element LC superconducting resonators optimized for their coupling to distinct transitions of a vanadyl porphyrin electronuclear qudit. The controlled integration of the vanadyl qudit onto the superconducting device, both in terms of number and orientation, is then attained using the formation of nanosheets of a 2D framework built on the vanadyl qudit as a node.

View Article and Find Full Text PDF

Photoexcited organic chromophores appended to molecular qubits can serve as a source of spin initialization or multilevel qudit generation for quantum information applications. So far, this approach has been primarily investigated in chromophore-stable radical systems. Here, we extend this concept to a linked oxovanadium(IV) porphyrin-free-base porphyrin dimer.

View Article and Find Full Text PDF
Article Synopsis
  • Molecular electron spin qubits can be organized in precise arrays, showing promise in quantum information science.
  • Researchers created a new material called paired-ion frameworks (PIFs) using vanadyl porphyrin molecular qubits, which were studied using electron paramagnetic resonance spectroscopy.
  • The spin coherence time of these qubits was measured at different temperatures, with improved coherence times observed in specific conditions due to reduced interaction effects, highlighting the potential of PIFs for developing advanced quantum materials.
View Article and Find Full Text PDF

Two new vanadyl complexes of N-confused porphyrins (NCPs), [VONCTPP] () and [VONCP(OMe)] (), have been synthesized for the first time and investigated as a catalyst for the oxidative bromination reaction of phenol and its derivatives. This article further delineates crystal structures, photophysical, and redox properties of both the vanadyl complexes. Complexes and exhibited a significant red shift in their absorption spectra compared with their respective free bases.

View Article and Find Full Text PDF

Chitosan/zeolite-X (CHS/ZX) was synthesized to serve as an effective adsorbent for metal porphyrins through adsorption processes as an alternative to traditional separation methods from crude oil. The adsorption-desorption mechanisms of vanadyl and nickel tetraphenyl porphyrin (VO-TPP and Ni-TPP) were conducted on the model solution. Compared to individual components CHS and ZX, the CHS/ZX composite exhibited a doubled capacity for metal porphyrin removal.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!