Responses to drought within a single species may vary based on plant developmental stage, drought severity, and the avoidance or tolerance mechanisms employed. Early drought stress can restrict emergence and seedling growth. Thus, in areas where water availability is limited, rapid germination leading to early plant establishment may be beneficial. Alternatively, germination without sufficient water to support the seedling may lead to early senescence, so reduced germination under low moisture conditions may be adaptive at the level of the population. We studied the germination response to osmotic stress of diverse chile pepper germplasm collected in southern Mexico from varied ecozones, cultivation systems, and of named landraces. Drought stress was simulated using polyethylene glycol solutions. Overall, survival time analysis revealed delayed germination at the 20% concentration of PEG across all ecozones. The effect was most pronounced in the genotypes from hotter, drier ecozones. Additionally, accessions from wetter and cooler ecozones had the fastest rate of germination. Moreover, accessions of the landraces Costeño Rojo and Tusta germinated more slowly and incompletely if sourced from a drier ecozone than a wetter one, indicating that slower, reduced germination under drought stress may be an adaptive avoidance mechanism. Significant differences were also observed between named landraces, with more domesticated types from intensive cultivation systems nearly always germinating faster than small-fruited backyard- or wild-types, perhaps due to the fact that the smaller-fruited accessions may have undergone less selection. Thus, we conclude that there is evidence of local adaptation to both ecozone of origin and source cultivation system in germination characteristics of diverse chile peppers.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7668591 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0236001 | PLOS |
Sci Rep
January 2025
Department of Agriculture, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, 1983969411, Iran.
Various practical strategies have been employed to mitigate the detrimental effects of water deficit stress on plants such as application of nano-stimulants. Nanosilicon plays a crucial role in alleviating the deleterious impacts of both abiotic and biotic stresses in plants by modulating various phyto-morphological and physiological processes. This study aimed to examine the combined effects of drought stress and nanosilicon application on the morphological traits and essential oil content and compositions of hemp (Cannabis sativa L.
View Article and Find Full Text PDFTree Physiol
January 2025
Institute of Soil and Water Conservation, Northwest A&F University, Yangling 712100, China.
Modulation of stomatal development and movement is a promising approach for creating water-conserving plants. Here, we identified and characterized the PagHCF106 gene of poplar (Populus alba × Populus glandulosa). The PagHCF106 protein localized predominantly to the chloroplast, and the PagHCF106 gene exhibited tissue-specific expression pattern.
View Article and Find Full Text PDFJ Insect Sci
January 2025
Department of Agricultural Sciences and Engineering, College of Agriculture, Tennessee State University, Otis L. Floyd Nursery Research Center, McMinnville, TN, USA.
The role of flood and drought stress on Xylosandrus ambrosia beetle attacks and colonization in nursery trees with varying levels of water stress tolerance has not yet been studied. This study aimed to examine ambrosia beetle preference for tree species varying in their tolerance to water stress. Container-grown dogwoods, redbuds, and red maples were exposed to flood, drought, or sufficient water treatments for 28 d and beetle attacks were counted every third day.
View Article and Find Full Text PDFAnn Bot
January 2025
Institute of Botany, Czech Academy of Sciences, Dukelská 135, 379 01 Třeboň, Czech Republic.
Background And Aims: Understanding interspecific differences in plant growth rates and their internal and external drivers is key to predicting species responses to ongoing environmental changes. Annual growth rates vary among plants based on their ecological preferences, growth forms, ecophysiological adaptations, and evolutionary history. However, the relative importance of these factors remains unclear, particularly in high-mountain ecosystems experiencing rapid changes.
View Article and Find Full Text PDFFront Plant Sci
January 2025
School of Life Sciences, East China Normal University, Shanghai, China.
Frequent and extreme drought exerts profound effects on vegetation growth and production worldwide. It is imperative to identify key genes that regulate plant drought resistance and to investigate their underlying mechanisms of action. Long-chain fatty acids and their derivatives have been demonstrated to participate in various stages of plant growth and stress resistance; however, the effects of medium-chain fatty acids on related functions have not been thoroughly studied.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!