Noninvasive thermal therapies for the treatment of breast cancer depend on accurate monitoring of tissue temperature to optimize treatment and ensure safety. This work describes a real-time system for 3-D thermoacoustic imaging and thermometry (TAI-TAT) for tracking temperature in tissue samples during heating. The study combines a 2.7-GHz microwave pulse generator with a custom 1.5-D 0.6 MHz ultrasound array for generating and detecting TA signals. The system is tested and validated on slabs of biological tissue and saline gel during heating. Calibration curves for relating the TA signal to temperature were calculated in saline gel (3.40%/°C), muscle (1.73%/°C), and fat (1.15%/°C), respectively. The calibrations were used to produce real-time, volumetric temperature maps at ~3-s intervals with a spatial resolution of approximately 3 mm. TAT temperature changes within a region of interest were compared to adjacent thermocouples with a mean error of 17.3%, 13.2%, and 20.4% for muscle, gel, and fat, respectively. The TAT algorithm was also able to simultaneously track temperatures in different tissues. With further development, noninvasive TAI-TAT may prove to be a valuable method for accurate and real-time feedback during breast cancer ablation therapy.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TUFFC.2020.3038053DOI Listing

Publication Analysis

Top Keywords

real-time volumetric
8
thermoacoustic imaging
8
imaging thermometry
8
ultrasound array
8
breast cancer
8
saline gel
8
temperature
5
real-time
4
volumetric thermoacoustic
4
thermometry 15-d
4

Similar Publications

Tracking and Navigation Technologies for Image-Guided Trans-Arterial Interventions.

Tech Vasc Interv Radiol

December 2024

Department of Radiology, Mayo Clinic, Phoenix, AZ. Electronic address:

Trans-arterial interventions are an increasingly utilized approach for diagnosing and treating a wide range of pathologies, providing superior patient outcomes compared to traditional open surgical methods. Recent advancements in tracking and navigation technologies have significantly refined these interventions, enhancing procedural precision and success. Advanced imaging modalities, such as fluoroscopy, cone beam computed tomography (CBCT), and intravascular ultrasound (IVUS), are frequently used strategies offering critical real-time guidance.

View Article and Find Full Text PDF

Multimodal imaging of murine cerebrovascular dynamics induced by transcranial pulse stimulation.

Alzheimers Dement

January 2025

Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, Zurich, Switzerland.

Introduction: Transcranial pulse stimulation (TPS) is increasingly being investigated as a promising potential treatment for Alzheimer's disease (AD). Although the safety and preliminary clinical efficacy of TPS short pulses have been supported by neuropsychological scores in treated AD patients, its fundamental mechanisms are uncharted.

Methods: Herein, we used a multi-modal preclinical imaging platform combining real-time volumetric optoacoustic tomography, contrast-enhanced magnetic resonance imaging, and ex vivo immunofluorescence to comprehensively analyze structural and hemodynamic effects induced by TPS.

View Article and Find Full Text PDF

Gas bubbles, commonly used in medical ultrasound (US), witness advancements with nanobubbles (NB), providing improved capabilities over microbubbles (MB). NBs offer enhanced penetration into capillaries and the ability to extravasate into tumors following systemic injection, alongside prolonged circulation and persistent acoustic contrast. Low-frequency insonation (<1 MHz) with NBs holds great potential in inducing significant bioeffects, making the monitoring of their acoustic response critical to achieving therapeutic goals.

View Article and Find Full Text PDF

Background: Left ventricular (LV) volumes can be calculated from various linear, monoplane, and multiplane echocardiographic methods, and the same method can be applied to different imaging views. However, these methods and their variations have not been comprehensively evaluated against real-time 3-dimensional echocardiography (RT3D).

Hypothesis/objectives: To identify the LV volumetric approaches that produce the least bias and the best agreement with RT3D, and to assess interoperator reproducibility between an experienced and an inexperienced operator.

View Article and Find Full Text PDF
Article Synopsis
  • The study presents a new real-time volumetric free-hand ultrasound imaging system designed to improve 3D imaging for large organs, specifically addressing challenges like long acquisition times and patient movement.
  • The system employs an incremental imaging technique and two tissue segmentation algorithms to enhance feature recognition and visualize spinal anatomy in 3D.
  • Validation tests on various ultrasound models and experiments with scoliosis patients showed promising results, indicating a high correlation with X-ray images and suggesting potential for broader clinical applications.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!