The inspiral phasing of binary black holes at intermediate mass ratios (m_{2}/m_{1}∼10^{-3}) is important for gravitational wave observations, but not accessible to standard modeling techniques: The accuracy of the small mass-ratio (SMR) expansion is unknown at intermediate mass ratios, whereas numerical relativity simulations cannot reach this regime. This article assesses the accuracy of the SMR expansion by extracting the first three terms of the SMR expansion from numerical relativity data for nonspinning, quasicircular binaries. We recover the leading term predicted by SMR theory and obtain a robust prediction of the next-to-leading term. The influence of higher-order terms is bounded to be small, indicating that the SMR series truncated at next-to-leading order is quite accurate at intermediate mass ratios and even at nearly comparable mass binaries. We estimate the range of applicability for SMR and post-Newtonian series for nonspinning, quasicircular inspirals.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.125.181101DOI Listing

Publication Analysis

Top Keywords

intermediate mass
12
mass ratios
12
smr expansion
12
small mass-ratio
8
numerical relativity
8
nonspinning quasicircular
8
smr
6
intermediate
4
intermediate mass-ratio
4
mass-ratio black
4

Similar Publications

Tomato (Solanum lycopersicum L.) is an important model plant whose fleshy fruit consists of well-differentiated tissues. Recently it was shown that these tissues develop hypoxia during fruit development and ripening.

View Article and Find Full Text PDF

Sulforaphane acutely activates multiple starvation response pathways.

Front Nutr

January 2025

Aging and Metabolism Research Program, Oklahoma City, OK, United States.

Sulforaphane (SFN) is an isothiocyanate derived from cruciferous vegetables that has demonstrated anti-cancer, anti-microbial and anti-oxidant properties. SFN ameliorates various disease models in rodents (e.g.

View Article and Find Full Text PDF

Reducing iridium (Ir) loading while maintaining efficiency and stability is crucial for the acidic oxygen evolution reaction (OER). In this study, we develop a synthetic method of sequential electrochemical deposition and high-temperature thermal shock to produce an IrO/Ir-WO electrocatalyst with ∼1.75 nm IrO nanoparticles anchoring on Ir-doped WO nanosheets.

View Article and Find Full Text PDF

Background: The use of iodinated contrast-enhancing agents in computed tomography (CT) improves the visualization of relevant structures for radiotherapy treatment planning (RTP). However, it can lead to dose calculation errors by incorrectly converting a CT number to electron density.

Purpose: This study aimed to propose an algorithm for deriving virtual non-contrast (VNC) electron density from dual-energy CT (DECT) data.

View Article and Find Full Text PDF

The efficient degradation of SAs is a significant challenge for the treatment of wastewater. To address this, the FeS@BC was prepared by calcining a mixture of pyrite and biomass, and used to activate peroxydisulfate (PDS) to degrade sulfadiazine (SDZ). The effect of carbon sources (wheat straw, rice husk, and corn cob) on catalytic activity of FeS@BC were investigated by Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), total Fe dissolution and free radical quantification.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!