Ferromagnetic Weyl Fermions in Two-Dimensional Layered Electride Gd_{2}C.

Phys Rev Lett

Department of Physics, Research Institute for Natural Science, and Institute for High Pressure at Hanyang University, Hanyang University, 222 Wangsimni-ro, Seongdong-Ku, Seoul 04763, Republic of Korea.

Published: October 2020

Recently, two-dimensional layered electrides have emerged as a new class of materials which possess anionic electrons in the interstitial spaces between cationic layers. Here, based on first-principles calculations, we discover a time-reversal-symmetry-breaking Weyl semimetal phase in a unique two-dimensional layered ferromagnetic (FM) electride Gd_{2}C. It is revealed that the crystal field mixes the interstitial electron states and Gd-5d orbitals near the Fermi energy to form band inversions. Meanwhile, the FM order induces two spinful Weyl nodal lines (WNLs), which are converted into multiple pairs of Weyl nodes through spin-orbit coupling. Further, we not only identify Fermi-arc surface states connecting the Weyl nodes but also predict a large intrinsic anomalous Hall conductivity due to the Berry curvature produced by the gapped WNLs. Our findings demonstrate the existence of Weyl fermions in the room-temperature FM electride Gd_{2}C, therefore offering a new platform to investigate the intriguing interplay between electride materials and magnetic Weyl physics.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.125.187203DOI Listing

Publication Analysis

Top Keywords

two-dimensional layered
12
electride gd_{2}c
12
weyl fermions
8
weyl nodes
8
weyl
6
ferromagnetic weyl
4
fermions two-dimensional
4
electride
4
layered electride
4
gd_{2}c two-dimensional
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!