Integration of semiconducting transition metal dichalcogenides (TMDs) into functional optoelectronic circuitries requires an understanding of the charge transfer across the interface between the TMD and the contacting material. Here, we use spatially resolved photocurrent microscopy to demonstrate electronic uniformity at the epitaxial graphene/molybdenum disulfide (EG/MoS) interface. A 10× larger photocurrent is extracted at the EG/MoS interface when compared to the metal (Ti/Au)/MoS interface. This is supported by semi-local density functional theory (DFT), which predicts the Schottky barrier at the EG/MoS interface to be ∼2× lower than that at Ti/MoS. We provide a direct visualization of a 2D material Schottky barrier through combination of angle-resolved photoemission spectroscopy with spatial resolution selected to be ∼300 nm (nano-ARPES) and DFT calculations. A bending of ∼500 meV over a length scale of ∼2-3 μm in the valence band maximum of MoS is observed via nano-ARPES. We explicate a correlation between experimental demonstration and theoretical predictions of barriers at graphene/TMD interfaces. Spatially resolved photocurrent mapping allows for directly visualizing the uniformity of built-in electric fields at heterostructure interfaces, providing a guide for microscopic engineering of charge transport across heterointerfaces. This simple probe-based technique also speaks directly to the 2D synthesis community to elucidate electronic uniformity at domain boundaries alongside morphological uniformity over large areas.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsnano.0c02527DOI Listing

Publication Analysis

Top Keywords

eg/mos interface
12
spatially resolved
8
resolved photocurrent
8
electronic uniformity
8
schottky barrier
8
interface
5
photophysics electronic
4
electronic structure
4
structure lateral
4
lateral graphene/mos
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!