The slow-release mechanism of copper into soil followed by soil biodegradation was studied using the chitosan (CTS)/epoxidized natural rubber (ENR) biocomposite. The biocomposite was prepared by homogenizing CTS in ENR50 (ENR with about 50% epoxy content) latex in the presence of curing agents and acetic acid. It was found that the adsorption property of the biocomposite was very much influenced by chitosan loading, where 20phrCTS-t-ENR biocomposite can absorb 76.31% of Cu(II) ions. The desorption study indicates that the copper (II) ion can be released at a very slow and control phase as proven by the kinetic study using zero-order, first-order, Higuchi, and Korsmeyer Peppas equations. The slow-release studies comply with the Higuchi square-root equation, indicating that the release process is diffusion-controlled. Results of desorption and biodegradation process suggest that this biocomposite has the potential use of being a slow-release matrix in the field of agriculture.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7659141PMC
http://dx.doi.org/10.1021/acsomega.0c04081DOI Listing

Publication Analysis

Top Keywords

natural rubber
8
biocomposite
5
chitosan epoxidized
4
epoxidized natural
4
rubber biocomposites
4
biocomposites sorption
4
sorption biodegradability
4
biodegradability studies
4
studies slow-release
4
slow-release mechanism
4

Similar Publications

The textile industry is one of the main industries that benefited from the industrial revolution. Therefore, discharging of dyes from textile, paper, plastic, and rubber industries is inevitable. This colored wastewater prevents sunlight penetration and highly affects water sources.

View Article and Find Full Text PDF

The synthesis of polyferrocenyldimethylsilane-b-poly(L-glutamic acid) block copolymers was systematically explored. Rod-like and plate-like micelles were prepared from self-assembly of the block copolymers in aqueous solution with two different approaches. In a dissolution-dialysis approach, micelles were prepared by dissolving a block copolymer sample in excess aqueous base followed by the dialysis of the solution against water.

View Article and Find Full Text PDF

Carbon black (CB) modification to achieve both homogeneous dispersion and strong interfacial interactions is a challenging subject for high-performance tread rubber composites. The effect of modification on CB surface characteristics is difficult to analyze experimentally, resulting in an uncomprehensive knowledge of the factors influencing interfacial interactions. In this study, 4,4'-diaminodiphenyldisulfide (APDS) was utilized to modify CB.

View Article and Find Full Text PDF

Car tyres are considered to release a substantial amount of particles to the environment. Due to the high emission volumes and the chemical risks associated with tyre rubber, there is an urgent need to quantify their ecotoxicological effects. The effects of exposure to particles derived from end-of-life tyres were investigated on the Baltic clam (Macoma balthica), which is one of the key invertebrate species living in the soft-bottom sediments of the northern Baltic Sea.

View Article and Find Full Text PDF

Degradation rates and ageing effects of UV on tyre and road wear particles.

Chemosphere

January 2025

TNO Environmental Modelling, Sensing and Analysis, Princetonlaan 6-8, 3584 CB, Utrecht, the Netherlands. Electronic address:

Tyre and road wear particles (TRWPs) are estimated to be the largest source of microplastics in the environment and due to the intrinsic use of tyres in our society this will continue to grow. Understanding their degradation mechanisms and subsequent accumulation over time is important to gain insights into the fate and impact of these particles in the environment. Accelerated UV-ageing was performed on cryomilled tyre tread particles and TRWPs from a road simulator to investigate the abiotic degradation of rubber.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!