A novel method for condensation reaction of indan-1,3-dione with various aldehydes which are efficiently catalyzed by a task-specific ionic liquid, 2-hydroxyethylammonium formate, to provide the corresponding 2-arylidenindane-1,3-diones has been developed. This green, low-cost, high-yield, and fast reaction takes place at room temperature without the use of any solvent and catalyst. A plausible reaction mechanism that involves ionic liquid-assisted activation is also discussed. This work is the first report of ionic liquids as a reaction medium and catalyst for the synthesis of 2-arylidenindane-1,3-diones.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7658926 | PMC |
http://dx.doi.org/10.1021/acsomega.0c03645 | DOI Listing |
ChemSusChem
January 2025
Dipartimento di Scienze Biologiche, Chimiche e Farmaceutiche, Università degli Studi di Palermo, Viale delle Scienze, Ed. 17, 90128, Palermo, Italia.
Valorization of carbohydrate-rich biomass by conversion into industrially relevant products is at the forefront of research in sustainable chemistry. In this work, we studied the inulin conversion into 5-hydroxymethylfurfural, in deep eutectic solvents, in the presence of acidic task-specific ionic liquids as catalysts. We employed aliphatic and aromatic ionic liquids as catalysts, and choline chloride-based deep eutectic solvents bearing glycols or carboxylic acids, as solvents.
View Article and Find Full Text PDFJ Ion Liq
December 2024
Department of Chemistry and Biochemistry, University of Nevada Las Vegas, 4505 S. Maryland Parkway, Box 454003, Las Vegas, NV 89154, United States.
Dicationic ionic liquids (DILs) are emerging as a powerful, next-generation approach to designing applied ILs because of their superior physicochemical properties as well as their diverse complexity and tunability for task specific applications. DILs are scarce in the literature compared to monocationic ILs (MILs), and one of their main issues is their expected tendency to possess higher melting temperatures. A series of 1,4-bis[2-(4-pyridyl)ethenyl] benzene and 1,4-bis[2-(2-pyridyl)ethenyl]benzene quaternary salts (Q-BPEBs) with different counterions (bromide, tosylate, and triflimide) and carbon chain lengths (C, C, and C) have been synthesized for their potential as DILs with strong photoluminescent properties in the solid state.
View Article and Find Full Text PDFTalanta
April 2025
College of Chemistry, Liaoning University, Shenyang, 110036, China. Electronic address:
The development of a novel multifunctional adsorbent for the sensitive detection and capture of antibiotic residues in environmental and food samples presents a significant challenge. In this study, we synthesized a pioneering nanocomposite, ILs@PC, by encapsulating task-specific ionic liquids (ILs) within nitrogen-doped porous carbon (PC) derived from metal-triazolate frameworks. This ILs@PC nanocomposite functions as a multifunctional adsorbent in dispersive solid-phase extraction (DSPE), enabling simultaneous sorptive removal, sensitive detection, and molecular sieve selection.
View Article and Find Full Text PDFHeliyon
November 2024
Department of Chemistry, College of Science, Bahir Dar University, P.O. Box 79, Bahir Dar, Ethiopia.
Sustainable technology in energy-related applications will be crucial in the coming decades. As a result, developing new materials for existing processes has presently arisen as a major research priority. Recently, Deep eutectic solvents (DESs) have been expected as low-cost task-specific solvents for zinc-air batteries (ZABs).
View Article and Find Full Text PDFFront Chem
November 2024
Department of Inorganic Chemistry, University of Vienna, Vienna, Austria.
We synthesized and characterized a novel, task-specific ionic liquid for metal extraction with considerably reduced leaching behavior compared to similar, phosphonium-based ionic liquids. The synthesis involves the design of the novel compound [TOPP][PAM] featuring both a highly hydrophobic cation and a functional anion. The characterization of the novel ionic liquid confirmed the formation of the desired structure and sufficient purity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!