MIR143 Inhibits Steroidogenesis and Induces Apoptosis Repressed by H3K27me3 in Granulosa Cells.

Front Cell Dev Biol

Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, National Engineering Research Centre for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China.

Published: October 2020

The granulosa cell growth factor and apoptotic factor are two factors to determine follicular apoptosis. Whether ssc-miR-143-3p (MIR143) plays as an apoptosis factor in porcine granulosa cells (pGCs) remain unclear. This study tries to investigate what function of MIR143 is and how MIR143 gets these functions in pGCs from 3 to 5 mm medium-sized follicles. Firstly, 5' RACE was used to identify the structure of MIR143, and hybridization, qPCR, and DNA pull-down were employed to exhibit the spatio-temporal expression and transcriptional regulation of MIR143. Furthermore, ELISA, Western blotting, and flow cytometry were adopted to explore the functions of MIR143 in pGCs. It was found that MIR143 was an exonic miRNA located in host gene with an increasing expression during follicular growth. Moreover, MIR143 suppressed steroidogenesis related genes of HSD17β4, ER1, and PTGS2, negatively regulating estrogen, androgen, progesterone, and prostaglandin. MIR143 induced the apoptosis via activation of -dependent signaling. Furthermore, H3K27me3 influenced the recruitment of transcription factors and binding proteins to repress MIR143 transcription. At last, H3K27me3 agonist with MIR143 inhibition activated steroidogenesis but repressed apoptosis. These findings suggest that H3K27me3-mediated MIR143 inhibition play a critical role in follicular atresia by regulating cell apoptosis and steroidogenesis, which will provide useful information for further investigations of H3K27me3-miediated MIR143 epigenetic regulation in follicular growth in mammals.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7604341PMC
http://dx.doi.org/10.3389/fcell.2020.565261DOI Listing

Publication Analysis

Top Keywords

mir143
14
granulosa cells
8
follicular growth
8
mir143 inhibition
8
apoptosis
6
mir143 inhibits
4
steroidogenesis
4
inhibits steroidogenesis
4
steroidogenesis induces
4
induces apoptosis
4

Similar Publications

We investigated whether miR143#12, a synthesized chemically modified miR-143-3p derivative, exerts therapeutic effects on acute myocardial infarction (AMI). Sprague-Dawley rats and Japanese white rabbits underwent 30 min of coronary occlusion followed by 2 weeks of reperfusion. The rat AMI model was intravenously administered with control miRNA (9 μg/kg), 3 μg/kg or 9 μg/kg of miR143#12 1 h after reperfusion, while the rabbit AMI model was intravenously administered with control miRNA (9 μg/kg) or 9 μg/kg of miR143#12.

View Article and Find Full Text PDF

Doxorubicin (DOX), a cornerstone chemotherapeutic agent, effectively combats various malignancies but is marred by significant cardiovascular toxicity, including endothelial damage, chronic heart failure, and vascular remodeling. These adverse effects, mediated by oxidative stress, mitochondrial dysfunction, inflammatory pathways, and dysregulated autophagy, underscore the need for precise therapeutic strategies. Emerging research highlights the critical role of microRNAs (miRNAs) in DOX-induced vascular remodeling and cardiotoxicity.

View Article and Find Full Text PDF

In patients with type II diabetes, the development of diabetic cardiomyopathy (DC) is associated with a high risk of mortality. Left ventricular hypertrophy, diastolic dysfunction, and exercise intolerance are the first signs of DC. The underlying mechanisms are not fully elucidated, and there is an urgent need for specific biomarkers and molecular targets for early diagnosis and treatment.

View Article and Find Full Text PDF

Plant-derived miR166a-3p packaged into exosomes to cross-kingdom inhibit mammary cell proliferation and promote apoptosis by targeting APLNR gene.

Int J Biol Macromol

January 2025

Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China. Electronic address:

Article Synopsis
  • Plant-derived microRNAs (miRNAs) show potential for gene regulation across species, but more research is needed on how they function in animals, particularly in dairy cows.
  • An analysis of tissue-specific miRNA expression found 347 miRNAs in dairy cows, with 167 derived from maize, indicating strong absorption of these plant miRNAs, especially in the rumen and mammary glands.
  • The study demonstrates that the maize-derived miRNA miR166a-3p can inhibit cell proliferation and promote apoptosis in cultured cells, highlighting the significant role of plant miRNAs in biological processes and their potential applications in agriculture and medicine.
View Article and Find Full Text PDF

As delayed parenthood becomes more prevalent, understanding age-related testosterone decline and its impact on male fertility has gained importance. However, molecular mechanisms concerning testicular aging remain largely undiscovered. Our study highlights that miR-143-3p, present in aging Sertoli cells (SCs), is loaded into extracellular vesicles (EVs), affecting Leydig cells (LCs) and germ cells, thus disrupting testicular tissue homeostasis and spermatogenesis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!