Liquid crystalline gels offer promising means in generating smart materials due to programmable mechanics and reversible shape changes in response to external stimuli. We demonstrate a simple and convenient method of constructing catalyst-embedded lyotropic liquid crystalline (LLC) gels and achieve chemomechanical oscillator by converting chemical waves in Belousov-Zhabotinsky (BZ) reaction. We observe the directed chemical oscillations on LLC sticks accompanied by small-scale oscillatory swellings-shrinkages that are synchronized with the chemical waves of an LLC stick. To amplify the mechanical oscillations, we further fabricate small LLC fibers and achieve macroscopically oscillatory bending-unbending transition of the LLC fiber driven by a BZ reaction.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7645047 | PMC |
http://dx.doi.org/10.3389/fchem.2020.583165 | DOI Listing |
Phys Chem Chem Phys
January 2025
Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, Yanagido, Gifu 501-1193, Japan.
Control of the formation of liquid crystalline 3̄ gyroid phases and their nanostructures is critical to advance materials chemistry based on the structural feature of three-dimensional helical networks. Here, we present that introducing methyl side-group(s) and slight non-symmetry into aryloyl-hydrazine-based molecules is unexpectedly crucial for their formation and can be a new design strategy through tuning intermolecular interactions: the two chemical modifications in the core portion of the chain-core-chain type molecules effectively lower and extend the 3̄ phase temperature ranges with the increased twist angle between neighboring molecules along the network. The detailed analyses of the aggregation structure revealed the change in the core assembly mode from the double-layered core mode of the mother molecule (without methyl groups) to the single-layered core mode.
View Article and Find Full Text PDFSoft Matter
January 2025
Dipartimento di Chimica e Chimica Industriale, University of Pisa, via Moruzzi 13, Pisa 56124, Italy.
In the field of chiral smectic liquid crystals, orthoconic antiferroelectric liquid crystals (OAFLCs) have attracted the interest of the scientific community due to the very high tilt angle, close to 45°, and the consequent optical properties. In the present study, the first H NMR investigation is reported on two samples, namely 3F5HPhF9 and 3F7HPhF8, showing the phase sequence isotropic-SmC*-SmC* and the phase sequence isotropic-SmA-SmC*-SmC*, respectively, when cooling from the isotropic to the crystalline phases. To this aim, the liquid crystals were doped with a small amount of deuterated probe biphenyl-4,4'-diol-d.
View Article and Find Full Text PDFSoft Matter
January 2025
Department of Physics, Kyoto University, Kyoto 606-8502, Japan.
This study explores the influence of charge distribution and molecular shape on the stability of ferroelectric nematic liquid crystalline phases through atomistic simulations of DIO molecules. We demonstrate the role of dipole-dipole interactions and molecular shape in achieving polar ordering by simulating charged and chargeless topologies, and analysing positional and orientational pair-distribution functions. The charged DIO molecules exhibit head-to-tail and side-by-side parallel alignments conducive to long-range polar order, whereas the chargeless molecules show no polar ordering.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
School of Environmental Science and Engineering, Shenzhen Key Laboratory of Municipal Solid Waste Recycling Technology and Management, Southern University of Science and Technology, Shenzhen 518055, China.
Solid-liquid biphasic absorbents are a promising solution for overcoming the high-energy consumption challenge faced by liquid amine-based CO capture technologies. However, their practical applications are often hindered by difficulties in separating viscous solid-phase products. This study introduces a novel nonaqueous absorbent system (PD/PZ/NMP) composed of 4-amino-1-methylpiperidine (PD), piperazine (PZ), and -methyl-2-pyrrolidone (NMP), engineered to produce easily separable powdery products.
View Article and Find Full Text PDFSmall
January 2025
Department of Chemical Engineering, POSTECH, Pohang, 37673, Republic of Korea.
Liquid crystals (LCs) are widely used as promising stimuli-responsive materials due to their unique combination of liquid and crystalline properties, providing the capability to sense even molecular-scale events and amplify them into macroscopic optical outputs. However, encoding a high level of selectivity to a specific intermolecular event remains a key challenge, leading to prior studies regarding chemically functionalized LC interfaces. Herein, we propose an integrative strategy to significantly advance the design of chemo-responsive LCs through a deep fundamental understanding on the orientational coupling of LCs with new functional molecules, organic ionic plastic crystals (OIs), presented at LC interfaces.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!