Background: The polyphagous predatory bug is an active predator used to control thrips and aphids. The whitefly species and are voracious pests of different economic agricultural crops and vegetables.
Method: In this study, the Holling disc equation and the age-stage, two-sex life table technique were used to investigate the functional response and biological traits of third instar nymphs and adult female when presented third instar nymphs of both whitefly species as prey.
Results: The results showed a type II functional response for each life stage of when fed each whitefly species. The calculated prey handling time for different life stages were shorter when fed than when fed nymphs. In contrast, the nymphal development of was significantly shorter when fed than nymphs. Additionally, the total pre-oviposition period of adult females was statistically shorter when fed nymphs than nymphs. Furthermore, the survival rates and total fecundity of were higher when fed than . There were no significant differences in any population parameters of when fed either whitefly species. These results show that could survive and maintain its populations on both species of whitefly and could therefore serve as a biological control agent in integrated pest management (IPM).
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7394059 | PMC |
http://dx.doi.org/10.7717/peerj.9540 | DOI Listing |
Mol Plant
January 2025
State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China. Electronic address:
Herbivore insects deploy salivary effectors to manipulate the defense of their host plants. However, it remains unclear whether small RNAs from insects function as effectors in regulating plant-insect interactions. Here, we report that a microRNA (miR29-b) found in the saliva of phloem-feeding whitefly (Bemisa tabaci) can transfer into the host plant phloem during feeding and fine-tune the defense response of tobacco (Nicotiana tabacum).
View Article and Find Full Text PDFJ Environ Manage
December 2024
Department of Biodiversity and Ecosystem Management, Environmental Sciences Research Institute, Shahid Beheshti University, Tehran 1983963113, Iran. Electronic address:
Land use change represents a significant environmental transformation on a global scale, profoundly impacting natural ecosystems. The conversion of rangelands into urban parks can adversely affect soil characteristics and biodiversity. This transformation may lead to alterations in soil properties and invertebrate communities, subsequently influencing ecosystem functioning and resilience.
View Article and Find Full Text PDFSci Rep
December 2024
Institute of Agrobiological Sciences, NARO, Tsukuba, Ibaraki, Japan.
Recent changes in climate and environments have promoted the range expansion of insect pests of tropical and subtropical origins into temperate regions. For more accurate and faster risk assessment of this expansion, we developed a novel indicator to link a physiologically derived parameter of chilling injury with the survival of insect populations in nature by using two insects, Spodoptera frugiperda and Cicadulina bipunctata with tropical and subtropical origins, and one cool-adapted insect, Laodelphax striatellus. The parameter derived from a proportional increment in the time to 99.
View Article and Find Full Text PDFMicrob Ecol
December 2024
Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, Bolzano, Italy.
The gut microbiome plays an important role in insect evolution and ecology. Bacteria support the host's nutrition and defense and therefore play an important role in the fitness of the host. Halyomorpha halys is one of the most important invasive pest species in the world.
View Article and Find Full Text PDFPLoS One
December 2024
Invasive Insect Biocontrol and Behavior Laboratory, USDA-ARS, Beltsville, Maryland, United States of America.
The bagrada bug, Bagrada hilaris (Burmeister), is an emerging agricultural pest in the Americas, threatening agricultural production in the southwestern United States, Mexico and Chile, as well as in the Old World (including Africa, South Asia and, more recently, Mediterranean areas of Europe). Substantive transcriptomic sequence resources for this damaging species would be beneficial towards understanding its capacity for developing insecticide resistance, identifying viruses that may be present throughout its population and identifying genes differentially expressed across life stages that could be exploited for biomolecular pesticide formulations. This study establishes B.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!