Stimulation of Epithelial Sodium Channels in Endothelial Cells by Bone Morphogenetic Protein-4 Contributes to Salt-Sensitive Hypertension in Rats.

Oxid Med Cell Longev

Departments of Clinical Pharmacy and Cardiology, Harbin Medical University Cancer Hospital, Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, Harbin 150081, China.

Published: May 2021

Previous studies have shown that high salt induces artery stiffness by causing endothelial dysfunction via increased sodium influx. We used our unique split-open artery technique combined with protein biochemistry and measurement of vascular tone to test a hypothesis that bone morphogenetic protein 4 (BMP4) mediates high salt-induced loss of vascular relaxation by stimulating the epithelial sodium channel (ENaC) in endothelial cells. The data show that high salt intake increased BMP4 both in endothelial cells and in the serum and that exogenous BMP4 stimulated ENaC in endothelial cells. The data also show that the stimulation is mediated by p38 mitogen-activated protein kinases (p38 MAPK) and serum and glucocorticoid-regulated kinase 1 (Sgk1)/neural precursor cell expressed developmentally downregulated gene 4-2 (Nedd4-2) (Sgk1/Nedd4-2). Furthermore, BMP4 decreased mesenteric artery relaxation in a benzamil-sensitive manner. These results suggest that high salt intake stimulates endothelial cells to express and release BMP4 and that the released BMP4 reduces artery relaxation by stimulating ENaC in endothelial cells. Therefore, stimulation of ENaC in endothelial cells by BMP4 may serve as another pathway to participate in the complex mechanism of salt-sensitive (SS) hypertension.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7641672PMC
http://dx.doi.org/10.1155/2020/3921897DOI Listing

Publication Analysis

Top Keywords

endothelial cells
28
enac endothelial
16
high salt
12
epithelial sodium
8
endothelial
8
bone morphogenetic
8
salt-sensitive hypertension
8
relaxation stimulating
8
cells data
8
salt intake
8

Similar Publications

Cancer-associated fibroblasts (CAFs) are intrinsic components of the tumor microenvironment that promote cancer progression and metastasis. Through an unbiased integrated analysis of gastric tumor grade and stage, we identified a subset of proangiogenic CAFs characterized by high podoplanin (PDPN) expression, which are significantly enriched in metastatic lesions and secrete chemokine (CC-motif) ligand 2 (CCL2). Mechanistically, PDPN(+) CAFs enhance angiogenesis by activating the AKT/NF-κB signaling pathway.

View Article and Find Full Text PDF

Ultraviolet (UV)-induced DNA mutations produce genetic drivers of cutaneous melanoma initiation and numerous neoantigens that can trigger anti-tumor immune responses in the host. Consequently, melanoma cells must rapidly evolve to evade immune detection by simultaneously modulating cell-autonomous epigenetic mechanisms and tumor-microenvironment interactions. Angiogenesis has been implicated in this process; although an increase of vasculature initiates the immune response in normal tissue, solid tumors manage to somehow enhance blood flow while preventing immune cell infiltration.

View Article and Find Full Text PDF

It is becoming more broadly accepted that human-based models are needed to better understand the complexities of the human nervous system and its diseases. The recently developed human brain organotypic culture model is one highly promising model that requires the involvement of neurosurgeons and neurosurgical patients. Studies have investigated the electrophysiological properties of neurons in such human tissues, but the maintenance of other cell types within explanted brain remains largely unknown.

View Article and Find Full Text PDF

Tertiary lymphoid structures (TLS) are lymphoid formations that develop in non-lymphoid tissues during chronic inflammation, autoimmune diseases, and cancer. Accurate identification and quantification of TLS in tissue can provide crucial insights into the immune response of several disease processes including antitumor immune response. TLS are defined as aggregates of T cells, B cells and dendritic cells.

View Article and Find Full Text PDF

Disorders in pulmonary vascular integrity are a prominent feature in many lung diseases. Paracrine signaling is highly enriched in the lung and plays a crucial role in regulating vascular homeostasis. However, the specific local cell-cell crosstalk signals that maintain pulmonary microvascular stability in adult animals and humans remain largely unexplored.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!