Wheat crop production needs nitrogen (N) for ensuring yield and quality. High doses of inorganic N fertilizer are applied to soil before sowing (basal dressing), with additional doses supplied along the cultivation (top dressing). Here, a long-term wheat field trial (12 plots), including four conditions (control, N top dressing, T34 seed-inoculation, and top dressing plus T34) in triplicate, was performed to assess, under high basal N fertilization, the influence of these treatments on crop yield and root microbial community shaping. Crop yield was not affected by top dressing and T34, but top dressing significantly increased grain protein and gluten contents. Twenty-seven-week old wheat plants were collected at 12 days after top dressing application and sampled as bulk soil, rhizosphere and root endosphere compartments in order to analyze their bacterial and fungal assemblies by 16S rDNA and ITS2 high-throughput sequencing, respectively. Significant differences for bacterial and fungal richness and diversity were detected among the three compartments with a microbial decline from bulk soil to root endosphere. The most abundant wheat root phyla were Proteobacteria and Actinobacteria for bacteria, and Ascomycota and Basidiomycota for fungi. An enrichment of genera commonly associated with soils subjected to chemical N fertilization was observed: , , and in bulk soil, in rhizosphere, and and in root endosphere. Taxa whose abundance significantly differed among conditions within each compartment were identified. Results show that: (i) single or strain T34-combined application of N top dressing affected to a greater extent the bulk soil bacterial levels than the use of T34 alone; (ii) when N top dressing and T34 were applied in combination, the N fertilizer played a more decisive role in the bacterial microbiome than T34; (iii) many genera of plant beneficial bacteria, negatively affected by N top dressing, were increased by the application of T34 alone; (iv) bulk soil and rhizosphere fungal microbiomes were affected by any of the three treatments assayed; and (v) all treatments reduced in bulk soil but the single application of T34 raised the rhizosphere levels of this mycorrhizal fungus.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7644891 | PMC |
http://dx.doi.org/10.3389/fpls.2020.575861 | DOI Listing |
Nanoscale
January 2025
Analytical & Testing Center; West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610064, China.
Continuous microenvironment modulation is an ongoing challenge in wound dressing, which includes excessive exudate absorption, oxygen delivery, bacterial inhibition and angiogenesis. Herein, we developed an construction strategy to fabricate a self-retaining double-layered wound dressing, where the top layer precursor was composed of Ca-containing polyvinyl butyral (PVB) solution dispersed with hydroxypropyl methylcellulose (HPMC) particles, and the bottom one consisted of sodium alginate (Alg) solution blended with Ag-doped mesoporous bioactive glass powders (Ag-MBG). When in use, both precursors were simultaneously squeezed out from the twin nozzles connected to the individual chambers of a twin-chambered syringe, whereby Ca in the top layer rapidly migrated downwards to crosslink Alg in the bottom layer, leading to the formation of an Alg/Ag-MBG (AA) functional hydrogel for filling an irregular wound.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Plant, Food, and Environmental Sciences, Dalhousie University, Truro, B2N 5E3, Nova Scotia, Canada.
Tea plantations commonly receive substantial quantities of nitrogen (N) fertilizer, with potential for considerable N loss to occur. This study assessed N retention in acidic tea plantation soil and examined how different biochar application rates and fertilizer combinations affect N dynamics, highlighting the importance of innovative technologies to monitor and enhance N supply management. This research adopted a modified 2-week aerobic incubation and ion-exchange membrane (IEM) techniques to evaluate the soil N supply in tea plantations following early-summer top-dressing as influenced by various biochar rates and fertilizer combinations.
View Article and Find Full Text PDFGels
January 2025
School of Pharmacy, Anhui Medical University, Hefei 230032, China.
Most of the existing hydrogel dressings have inadequacies in mechanical performance, biological activities, compatibility, or versatility, which results in the development of rapid, green, and cost-effective approaches for hydrogels in biochemical and biomedical applications becoming a top-priority task. Herein, inspired by the inherent bioactivity, water retention properties, and biocompatibility of natural polysaccharide hydrogels, we have prepared self-healing gels. Using polysaccharide (BSP), carboxymethyl chitosan (CMCS), and borax via borate ester linkages, we created hemostatic and self-healing Chinese herbal medicine hydrogels in varying concentrations (2.
View Article and Find Full Text PDFCarbohydr Polym
March 2025
Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran.
This study introduces a novel bilayer wound dressing that integrates a quaternized chitosan-polyacrylic acid (QCs-PAA) sponge as the top layer with electrospun nanofibers containing curcumin as the bottom layer. For the first time, QCs and PAA were combined in an 80:20 ratio through freeze-drying to form a porous sponge layer with ideal structural properties, including 83 ± 6 % porosity and pore diameters of 290 ± 12.5 μm.
View Article and Find Full Text PDFInt J Pharm
January 2025
Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111 Iran. Electronic address:
Multifunctional dual-layer wound dressings hold significant promise for comprehensive full-thickness wound management by closely mimicking the native skin structure and features. Herein, we employed an innovative approach utilizing electrospinning techniques to develop a dual-layer dressing comprising a microfibrous Ecoflex®-Vanillin (Ex-Vnil) top layer (TL) and a nanofibrous Soluplus®-Insulin-like growth factor-1 (Sol-IGF1) bottom layer (BL). The tensile properties of dual-layer wound dressings were within the standard range for use in skin tissue regeneration.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!