Insect herbivory is known to augment emissions of biogenic volatile organic compounds (BVOCs). Yet few studies have quantified BVOC responses to insect herbivory in natural populations in pan-Arctic regions. Here, we assess how quantitative and qualitative BVOC emissions change with increasing herbivore feeding intensity in the Subarctic mountain birch ( var (L.)) forest. We conducted three field experiments in which we manipulated the larval density of geometrid moths ( and ), on branches of mountain birch and measured BVOC emissions using the branch enclosure method and gas chromatography-mass spectrometry. Our study showed that herbivory significantly increased BVOC emissions from the branches damaged by larvae. BVOC emissions increased due to insect herbivory at relatively low larvae densities, causing up to 10% of leaf area loss. Insect herbivory also changed the blend composition of BVOCs, with damaged plants producing less intercorrelated BVOC blends than undamaged ones. Our results provide a quantitative understanding of the relationship between the severity of insect herbivore damage and emissions of BVOCs at larvae densities corresponding to background herbivory levels in the Subarctic mountain birch. The results have important and practical implications for modeling induced and constitutive BVOC emissions and their feedbacks to atmospheric chemistry.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7652793 | PMC |
http://dx.doi.org/10.3389/fpls.2020.558979 | DOI Listing |
Curr Opin Insect Sci
December 2024
Department of Entomology, Texas A&M University, College Station, TX, USA. Electronic address:
Plants and invertebrates use chemical signals and cues to construct information about their environment. It is well reviewed that chemical signals play key roles in interactions between conspecific insects, such as sex pheromones for finding mates, and that plants transmit chemical signals to recruit natural enemies that kill herbivores. However, it is also known that chemicals emitted by natural enemies can influence insect herbivore physiology and behavior.
View Article and Find Full Text PDFEnviron Sci Technol
December 2024
Institute of Biology, University of Neuchatel, 2000 Neuchatel,Switzerland.
The use of nanoparticles is a promising ecofriendly strategy for mitigating both abiotic and biotic stresses. However, the physiological and defense response mechanisms of plants exposed to multiple stresses remain largely unexplored. Herein, we examined how foliar application of biogenic nanosilica (BNS) impacts rice plant growth, molecular defenses, and metabolic responses when subjected to arsenic (As) toxicity and infested by the insect .
View Article and Find Full Text PDFEcol Lett
January 2025
U.S. Geological Survey, Fort Collins Science Center, Fort Collins, Colorado, USA.
Patterns of phytochemistry localisation in plant tissues are diverse within and across leaves. These spatial heterogeneities are important to the fitness of herbivores, but their effects on herbivore foraging and dietary experience remain elusive. We manipulated the spatial variance and clusteredness of a plant toxin in a synthetic diet landscape on which individual caterpillars fed.
View Article and Find Full Text PDFTree Physiol
December 2024
Department of Ecology, Faculty of Biology, University of Salamanca, Salamanca 37071, Spain.
Insect herbivory has attracted enormous attention from researchers due to its effects on plant fitness. However, there remain questions such as what are the most important leaf traits that determine consumption levels, whether there are latitudinal gradients in herbivore pressure, or whether there are differences in susceptibility between hybrids and their parental species. In this work we address all these issues in two species of Mediterranean Quercus (Q.
View Article and Find Full Text PDFArch Insect Biochem Physiol
December 2024
Agricultural Entomology and Pest Control, College of Plant Protection, Jilin Agricultural University, Changchun, PR China.
The plant defense against insects is multiple layers of interactions. They defend through direct defense and indirect defense. Direct defenses include both physical and chemical barriers that hinder insect growth, development, and reproduction.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!