Combined cellular and humoral host immune response determine the clinical course of a viral infection and effectiveness of vaccination, but currently the cellular immune response cannot be measured on simple blood samples. As functional activity of immune cells is determined by coordinated activity of signaling pathways, we developed mRNA-based JAK-STAT signaling pathway activity assays to quantitatively measure the cellular immune response on Affymetrix expression microarray data of various types of blood samples from virally infected patients (influenza, RSV, dengue, yellow fever, rotavirus) or vaccinated individuals, and to determine vaccine immunogenicity. JAK-STAT1/2 pathway activity was increased in blood samples of patients with viral, but not bacterial, infection and was higher in influenza compared to RSV-infected patients, reflecting known differences in immunogenicity. High JAK-STAT3 pathway activity was associated with more severe RSV infection. In contrast to inactivated influenza virus vaccine, live yellow fever vaccine did induce JAK-STAT1/2 pathway activity in blood samples, indicating superior immunogenicity. Normal (healthy) JAK-STAT1/2 pathway activity was established, enabling assay interpretation without the need for a reference sample. The JAK-STAT pathway assays enable measurement of cellular immune response for prognosis, therapy stratification, vaccine development, and clinical testing.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7604353 | PMC |
http://dx.doi.org/10.3389/fimmu.2020.575074 | DOI Listing |
Orphanet J Rare Dis
January 2025
Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands.
Background: Inclusion Body Myositis is an acquired muscle disease. Its pathogenesis is unclear due to the co-existence of inflammation, muscle degeneration and mitochondrial dysfunction. We aimed to provide a more advanced understanding of the disease by combining multi-omics analysis with prior knowledge.
View Article and Find Full Text PDFMol Cancer
January 2025
Department of Biosciences and Bioinformatics & Suzhou Municipal Key Lab of Biomedical Sciences and Translational Immunology, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, China.
The last decade has witnessed unprecedented succusses with the use of immune checkpoint inhibitors in treating cancer. Nevertheless, the proportion of patients who respond favorably to the treatment remained rather modest, partially due to treatment resistance. This has fueled a wave of research into potential mechanisms of resistance to immune checkpoint inhibitors which can be classified into primary resistance or acquired resistance after an initial response.
View Article and Find Full Text PDFRespir Res
January 2025
Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
H3 lysine 4 trimethylation (H3K4me3) modification and related regulators extensively regulate various crucial transcriptional courses in health and disease. However, the regulatory relationship between H3K4me3 modification and anti-tumor immunity has not been fully elucidated. We identified 72 independent prognostic genes of lung adenocarcinoma (LUAD) whose transcriptional expression were closely correlated with known 27 H3K4me3 regulators.
View Article and Find Full Text PDFCell Commun Signal
January 2025
Digestive Disease Center, The First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang Province, 154000, China.
Background: Programmed cell death ligand 1 (PD-L1) expression on immune cells is correlated with the efficacy of immune checkpoint inhibitor (ICI) therapy in various types of cancer. Platelets are important components of the tumour microenvironment (TME) and are widely involved in the development of many types of cancer including colorectal cancer (CRC). However, the role of PD-L1 positive platelets in ICI therapy for CRC remains unknown.
View Article and Find Full Text PDFBMC Public Health
January 2025
Department of Infectious Diseases and Clinical Microbiology, Faculty of Medicine, Dokuz Eylul University, İzmir, Türkiye.
Background: MPOX (Monkeypox) is a zoonotic disease of increasing global concern due to its re-emergence and potential for human-to-human transmission. Effective public health interventions rely on understanding socio-demographic determinants of knowledge and perceptions of the disease. This study aimed to investigate MPOX-related knowledge and concerns among a diverse sample in Türkiye, identifying key factors influencing knowledge levels.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!