Glioblastoma (GBM) is the most malignant form of astrocytoma with short survival and a high recurrence rate and remains a global problem. Currently, surgery, chemotherapy, radiotherapy, and other comprehensive treatments are the main treatment modalities, but patients still have a poor prognosis mainly due to the infiltrative growth of GBM and the protective effect of the blood-brain barrier on tumor cells. Therefore, immunotherapy is expected to be a good option for GBM. In the immune system, different cells play varying roles in the treatment of GBM, so understanding the roles played by various immune cells in treating GBM and considering how to combine these effects to maximize the efficacy of these cells is important for the selection of comprehensive and optimal treatment plans and improving GBM prognosis. Therefore, this study reviews the latest research progress on the role of various types of immune cells in the treatment of GBM.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7609403PMC
http://dx.doi.org/10.3389/fimmu.2020.544563DOI Listing

Publication Analysis

Top Keywords

treatment gbm
8
immune cells
8
gbm
7
cells
5
advances immune
4
immune cell
4
cell therapy
4
therapy glioblastoma
4
glioblastoma glioblastoma
4
glioblastoma gbm
4

Similar Publications

Background: Dementia is a major public health challenge in modern society. Early detection of high-risk dementia patients and timely intervention or treatment are of significant clinical importance. Neural network survival analysis represents the most advanced technology for survival analysis to date.

View Article and Find Full Text PDF

The tumor microenvironment in glioblastoma (GBM) is characterized by a pronounced immunosuppressive state, which significantly hampers tumor treatment and contributes to treatment resistance. While our previous research established that black phosphorus nanosheets (BPNS) inhibited glioblastoma cell migration and invasion, the impact of BPNS on the anti-tumor-associated immune mechanism remains unexplored. This study firstly investigated whether BPNS could modulate the tumor microenvironment through immunotherapy and elucidated the underlying mechanisms.

View Article and Find Full Text PDF

Glioblastoma multiforme (GBM) is among the most challenging malignant brain tumors, making the development of new treatment strategies highly necessary. Glioma stem cells (GSCs) markedly contribute to drug resistance, radiation resistance, and tumor recurrence in GBM. The therapeutic potential of nanomaterials targeting GSCs in GBM urgently needs to be explored.

View Article and Find Full Text PDF

Background: Glioblastoma (GBM) has a median survival of <2 years. Pexidartinib (PLX3397) is a small-molecule inhibitor of CSF1R, KIT, and oncogenic FTL3, which are implicated in GBM treatment resistance. Results from glioma models indicate that combining radiation therapy (RT) and pexidartinib reduces radiation resistance.

View Article and Find Full Text PDF

Background: Glioblastoma multiforme (GBM) is an aggressive brain tumor that primarily affects adults. The Stupp Protocol, which includes surgical resection, chemoradiation, and monotherapy with temozolomide (TMZ), is the standard treatment regimen for GBM. However, repeated use of TMZ leads to resistance in GBM cells, resulting in a poor prognosis for patients.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!