Spiroplasmas are cell-wall-deficient helical bacteria belonging to the class . Their ability to maintain a helical shape in the absence of cell wall and their motility in the absence of external appendages have attracted attention from the scientific community for a long time. In this review we compare and contrast motility, shape determination and cytokinesis mechanisms of with those of other and cell-walled bacteria. The current models for rod-shape determination and cytokinesis in cell-walled bacteria propose a prominent role for the cell wall synthesis machinery. These models also involve the cooperation of the actin-like protein MreB and FtsZ, the bacterial homolog of tubulin. However the exact role of the cytoskeletal proteins is still under much debate. possess MreBs, exhibit a rod-shape dependent helical morphology, and divide by an FtsZ-dependent mechanism. Hence, spiroplasmas represent model organisms for deciphering the roles of MreBs and FtsZ in fundamental mechanisms of non-spherical shape determination and cytokinesis in bacteria, in the absence of a cell wall. Identification of components implicated in these processes and deciphering their functions would require genetic experiments. Challenges in genetic manipulations in spiroplasmas are a major bottleneck in understanding their biology. We discuss advancements in genome sequencing, gene editing technologies, super-resolution microscopy and electron cryomicroscopy and tomography, which can be employed for addressing long-standing questions related to biology.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7609405 | PMC |
http://dx.doi.org/10.3389/fmicb.2020.589279 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!