Fungal Symbionts Enhance N-Uptake for Antarctic Plants Even in Non-N Limited Soils.

Front Microbiol

Laboratorio de Biología Vegetal, Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Chile.

Published: October 2020

Plant-fungi interactions have been identified as fundamental drivers of the plant host performance, particularly in cold environments where organic matter degradation rates are slow, precisely for the capacity of the fungal symbiont to enhance the availability of labile nitrogen (N) in the plant rhizosphere. Nevertheless, these positive effects appear to be modulated by the composition and amount of the N pool in the soil, being greater when plant hosts are growing where N is scarce as is the case of Antarctic soils. Nevertheless, in some coastal areas of this continent, seabirds and marine mammal colonies exert, through their accumulated feces and urine a strong influence on the edaphic N content surrounding their aggregation points. To evaluate if the fungal symbionts (root endophytes), associated to the only two Antarctic vascular plants and , act as N-uptake enhancers, even in such N-rich conditions as those found around animal influence, we assessed, under controlled conditions, the process of N mineralization in soil by the accumulation of NH in the rizhosphere and the biomass accumulation of plants with (E+) and without (E-) fungal symbionts. Complementarily, taking advantage of the isotopic N-fractionation that root-fungal symbionts exert on organic N molecules during its acquisition process, we also determined if endophytes actively participate in the Antarctic plants N-uptake, when inorganic N is not a limiting factor, by estimating the δN isotopic signatures in leaves. Overall, symbiotic interaction increased the availability of NH in the rhizosphere of both species. As expected, the enhanced availability of inorganic N resulted in a higher final biomass in E + compared with E- plants of both species. In addition, we found that the positive role of fungal symbionts was also actively linked to the process of N-uptake in both species, evidenced by the contrasting δN signatures present in E+ (-0.4 to -2.3‰) relative to E- plants (2.7-3.1‰). In conclusion, despite being grown under rich N soils, the two Antarctic vascular plants showed that the presence of root-fungal endophytes, furthermore enhanced the availability of inorganic N sources in the rhizosphere, has a positive impact in their biomass, remarking the active participation of these endophytes in the N-uptake process for plants inhabiting the Antarctic continent.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7645117PMC
http://dx.doi.org/10.3389/fmicb.2020.575563DOI Listing

Publication Analysis

Top Keywords

fungal symbionts
16
plants
8
antarctic plants
8
rhizosphere positive
8
antarctic vascular
8
vascular plants
8
plants n-uptake
8
enhanced availability
8
availability inorganic
8
antarctic
6

Similar Publications

Purpose: A promising feature of marine sponges is the potential anticancer efficacy of their secondary metabolites. The objective of this study was to explore the anticancer activities of compounds from the fungal symbiont of on breast cancer cells.

Methods: In the present research, , an endophytic fungal strain derived from the marine sponge was successfully isolated and characterized.

View Article and Find Full Text PDF

Rhizobia and legumes form a symbiotic relationship resulting in the formation of root structures known as nodules, where bacteria fix nitrogen. Legumes release flavonoids that are detected by the rhizobial nodulation (Nod) protein NodD, initiating the transcriptional activation of nod genes and subsequent synthesis of Nod Factors (NFs). NFs then induce various legume responses essential for this symbiosis.

View Article and Find Full Text PDF

Subcortical beetle communities interact with a wide range of semiochemicals released from different sources, including trees, fungi, and bark beetle pheromones. While the attraction of bark beetles, their insect predators, and competitors to bark beetle pheromones is commonly studied, the attraction of these beetle communities to other sources of semiochemicals remains poorly understood. We tested the attraction of bark and wood-boring beetles and their predators to host stress volatiles, fungal volatiles, and a mountain pine beetle lure in the field.

View Article and Find Full Text PDF

A pair of LysM receptors mediates symbiosis and immunity discrimination in Marchantia.

Cell

January 2025

New Cornerstone Science Laboratory, Key Laboratory of Plant Carbon Capture, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, SIBS, Chinese Academy of Sciences, Shanghai 200032, China; School of Life Sciences and Technology, Shanghai Tech University, Shanghai 201210, China. Electronic address:

Most land plants form symbioses with microbes to acquire nutrients but also must restrict infection by pathogens. Here, we show that a single pair of lysin-motif-containing receptor-like kinases, MpaLYR and MpaCERK1, mediates both immunity and symbiosis in the liverwort Marchantia paleacea. MpaLYR has a higher affinity for long-chain (CO7) versus short-chain chitin oligomers (CO4).

View Article and Find Full Text PDF

Soil imaging in the field and laboratory has greatly advanced our understanding of plant root systems. Soil fungi function as important plant symbionts and decomposers of complex organic material in soil environments. For fungal hyphae, however, the application of soil imaging remains scarce, limiting our understanding of hyphal systems in soil.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!