The global coronavirus disease 2019 (COVID-19) pandemic is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which is one of seven human coronaviruses. G-quadruplexes are intrinsic obstacles to genome replication. Whether G-quadruplexes are present in human coronaviruses is unknown. In the current study, we have predicted that all seven human coronaviruses harbor G-quadruplex sequences. Conserved G-quadruplex sequences in SARS-CoV and SARS-CoV-2 were analyzed and verified by circular dichroism (CD) spectroscopy and Thioflavin T fluorescence assay. Similar to SARS-CoV, SARS-CoV-2 encodes an nsP3 protein, which is predicted to associate with G-quadruplexes. Targeting G-quadruplex sequences in the SARS-CoV-2 genome by G-quadruplex ligands could be a new way to conquer COVID-19.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7644843 | PMC |
http://dx.doi.org/10.3389/fmicb.2020.567317 | DOI Listing |
Nat Commun
January 2025
Molecular and Cellular Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, 111 T. W. Alexander Drive, Research Triangle Park, NC, 27709, USA.
Coronaviruses evade detection by the host immune system with the help of the endoribonuclease Nsp15, which regulates levels of viral double stranded RNA by cleaving 3' of uridine (U). While prior structural data shows that to cleave double stranded RNA, Nsp15's target U must be flipped out of the helix, it is not yet understood whether Nsp15 initiates flipping or captures spontaneously flipped bases. We address this gap by designing fluorinated double stranded RNA substrates that allow us to directly relate a U's sequence context to both its tendency to spontaneously flip and its susceptibility to cleavage by Nsp15.
View Article and Find Full Text PDFAnal Chem
January 2025
State Key Laboratory for Manufacturing Systems Engineering, School of Instrument Science and Techonology, Xi'an Jiaotong University, Xi'an 710054, China.
Infectious diseases, especially respiratory infections, have been significant threats to human health. Therefore, it is essential to develop rapid, portable, and highly sensitive diagnostic methods for their control. Herein, a short-time preamplified, one-pot clustered regularly interspaced short palindromic repeats (CRISPR) nucleic acid detection method (SPOC) is developed by combining the rapid recombinase polymerase amplification (RPA) with CRISPR-Cas12a to reduce the mutual interference and achieve facile and rapid molecular diagnosis.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Pediatrics, Children's Medical Center, The First Hospital of Jilin University, Lequn Branch, No. 3302 Jilin Road, Changchun, 130021, China.
The global spread of the novel coronavirus disease 2019, caused by SARS-CoV-2 virus, impacts individuals of all age groups, including lactating women and children. Concerns have been raised regarding the potential transmission of SARS-CoV-2 from mother to child, following the discovery of SARS-CoV-2 RNA in human milk. Therefore, this study aims to investigate whether the Omicron novel coronavirus variants are transmitted through human milk.
View Article and Find Full Text PDFNat Genet
January 2025
Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, Japan.
Aberrant immune responses to viral pathogens contribute to pathogenesis, but our understanding of pathological immune responses caused by viruses within the human virome, especially at a population scale, remains limited. We analyzed whole-genome sequencing datasets of 6,321 Japanese individuals, including patients with autoimmune diseases (psoriasis vulgaris, rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), pulmonary alveolar proteinosis (PAP) or multiple sclerosis) and coronavirus disease 2019 (COVID-19), or healthy controls. We systematically quantified two constituents of the blood DNA virome, endogenous HHV-6 (eHHV-6) and anellovirus.
View Article and Find Full Text PDFEBioMedicine
January 2025
Biomedical Big Data Center, The First Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang, China. Electronic address:
Background: Coronavirus disease-2019 (COVID-19), caused by SARS-CoV-2 virus infection, is characterized as a multisystem disease, potentially yielding multifaceted consequences on various organs at multiple levels. At the end of 2022, over 90% of the Chinese population was infected by SARS-CoV-2 within 35 days because of adjustments to epidemic prevention and control policies. This short-term change provides an unprecedented opportunity for comparative studies on COVID-19 infection among large populations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!