AI Article Synopsis

  • Pathogenic microorganisms, especially those forming biofilms, pose challenges in biomedical research due to their multidrug resistance and persistent infections.
  • Researchers are exploring natural anti-biofilm agents, such as phytochemicals and biosurfactants, that offer better efficacy and lower toxicity compared to synthetic antibiotics.
  • The review highlights various natural compounds' mechanisms of action against biofilms, suggesting their potential to be combined for enhanced therapeutic strategies against multiple pathogenic species.

Article Abstract

Pathogenic microorganisms and their chronic pathogenicity are significant concerns in biomedical research. Biofilm-linked persistent infections are not easy to treat due to resident multidrug-resistant microbes. Low efficiency of various treatments and toxicity of available antibiotics drive the researchers toward the discovery of many effective natural anti-biofilm agents. Natural extracts and natural product-based anti-biofilm agents are more efficient than the chemically synthesized counterparts with lesser side effects. The present review primarily focuses on various natural anti-biofilm agents, i.e., phytochemicals, biosurfactants, antimicrobial peptides, and microbial enzymes along with their sources, mechanism of action via interfering in the quorum-sensing pathways, disruption of extracellular polymeric substance, adhesion mechanism, and their inhibitory concentrations existing in literature so far. This study provides a better understanding that a particular natural anti-biofilm molecule exhibits a different mode of actions and biofilm inhibitory activity against more than one pathogenic species. This information can be exploited further to improve the therapeutic strategy by a combination of more than one natural anti-biofilm compounds from diverse sources.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7658412PMC
http://dx.doi.org/10.3389/fmicb.2020.566325DOI Listing

Publication Analysis

Top Keywords

natural anti-biofilm
20
anti-biofilm agents
16
natural
7
anti-biofilm
5
agents
4
agents strategies
4
strategies control
4
control biofilm-forming
4
biofilm-forming pathogens
4
pathogens pathogenic
4

Similar Publications

Chlorogenic acid (CGA), a polyhydroxy phenolic acid, has been extensively studied for its antimicrobial properties. () threatens food safety by forming biofilms. This study aimed to investigate the mechanism of CGA against and its biofilm.

View Article and Find Full Text PDF

The emergence and prevalence of antibiotic-resistant bacteria (ARBs) have become a serious global threat, as the morbidity and mortality associated with ARB infections are continuously rising. The activation of quorum sensing (QS) genes can promote biofilm formation, which contributes to the acquisition of drug resistance and increases virulence. Therefore, there is an urgent need to develop new antimicrobial agents to control ARB and prevent further development.

View Article and Find Full Text PDF

Antimicrobial Responses to Bacterial Metabolic Activity and Biofilm Formation Studied Using Microbial Fuel Cell-Based Biosensors.

Biosensors (Basel)

December 2024

Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350108, China.

Simultaneous monitoring of antimicrobial responses to bacterial metabolic activity and biofilm formation is critical for efficient screening of new anti-biofilm drugs. A microbial fuel cell-based biosensor using as an electricigen was constructed. The effects of silver nanoparticles (AgNPs) on the cellular metabolic activity and biofilm formation of in the biosensors were investigated and compared with the traditional biofilm detection method.

View Article and Find Full Text PDF

Metal nanoparticles have attained much popularity due to their low toxicity, economic feasibility, and eco-friendly nature. The present study focuses on the synthesis of silver and zinc nanoparticles from Vitex altissima leaf extract, further characterized by UV/Vis spectral analysis, Powder-x-ray diffraction (XRD), FE-SEM, Fourier transform infrared (FTIR) spectroscopy, transmission electron microscopy (TEM), dynamic light scattering (DLS), and zeta potential. Synthesized silver and zinc nanoparticles were screened for antioxidant, anti-inflammatory, antibacterial, and anti-biofilm activities.

View Article and Find Full Text PDF

Eradication of single- and mixed-species biofilms of P. aeruginosa and S. aureus by pulsed streamer corona discharge cold atmospheric plasma.

Sci Total Environ

December 2024

Division of Environmental Physics, Faculty of Mathematics, Physics and Informatics, Comenius University, 842 48 Bratislava, Slovakia.

Cold atmospheric plasma has recently gained much attention due to its antimicrobial effects. Among others, plasma has proven its potential to combat microbial biofilms. Yet, knowledge of complex network interactions between individual microbial species in natural infection environments of the biofilm as well as plasma-biofilm inactivation pathways is limited.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!