An essential characteristic that an exploration robot must possess is to be autonomous. This is necessary because it will usually do its task in remote or hard-to-reach places. One of the primary elements of a navigation system is the information that can be acquired by the sensors of the environment in which it will operate. For this reason, an algorithm based on convolutional neural networks is proposed for the detection of rocks in environments similar to Mars. The methodology proposed here is based on the use of a Single-Shot-Detector (SSD) network architecture, which has been modified to evaluate the performance. The main contribution of this study is to provide an alternative methodology to detect rocks in planetary images because most of the previous works only focus on classification problems and used handmade feature vectors.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7661793 | PMC |
http://dx.doi.org/10.3389/fnbot.2020.590371 | DOI Listing |
Phys Eng Sci Med
January 2025
School of Electrical Engineering and Electronic Information, Xihua University, Chengdu, China.
Hypertrophic cardiomyopathy (HCM), including obstructive HCM and non-obstructive HCM, can lead to sudden cardiac arrest in adolescents and athletes. Early diagnosis and treatment through auscultation of different types of HCM can prevent the occurrence of malignant events. However, it is challenging to distinguish the pathological information of HCM related to differential left ventricular outflow tract pressure gradients.
View Article and Find Full Text PDFEur Radiol
January 2025
Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
Objectives: We aimed to use artificial intelligence to accurately identify molecular subgroups of medulloblastoma (MB), predict clinical outcomes, and incorporate deep learning-based imaging features into the risk stratification.
Methods: The MRI features were extracted for molecular subgroups by a novel multi-parameter convolutional neural network (CNN) called Bi-ResNet-MB. Then, MR features were used to establish a prognosis model based on XGBoost.
Front Bioeng Biotechnol
January 2025
Center for Orthopaedic Biomechanics, University of Denver, Denver, CO, United States.
Introduction: Accurate prediction of knee biomechanics during total knee replacement (TKR) surgery is crucial for optimal outcomes. This study investigates the application of machine learning (ML) techniques for real-time prediction of knee joint mechanics.
Methods: A validated finite element (FE) model of the lower limb was used to generate a dataset of knee joint kinematics, kinetics, and contact mechanics.
Talanta
January 2025
Department of Materials Science and Engineering, Sharif University of Technology, Azadi Avenue, Tehran, 14588-89694, Iran; Center for Bioscience and Technology, Institute for Convergence Science and Technology, Sharif University of Technology, Tehran, 14588-89694, Iran; Fraunhofer Institute for Manufacturing Technology and Advanced Materials, 28359, Bremen, Germany. Electronic address:
Real-time monitoring of sweat using wearable devices faces challenges such as limited adhesion, mechanical flexibility, and accurate detection. In this work, we present a stretchable, adhesive, bilayer hydrogel-based patch designed for continuous monitoring of sweat pH and glucose levels using AI-assisted smartphones. The patch is composed of a bottom PVA hydrogel layer functionalized with colorimetric reagents and glucose oxidase enzyme, while the top PVA-sucrose layer enhances skin adhesion and protects against air moisture.
View Article and Find Full Text PDFCureus
December 2024
Department of Orthodontics, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, IRN.
Background Orthodontic diagnostic workflows often rely on manual classification and archiving of large volumes of patient images, a process that is both time-consuming and prone to errors such as mislabeling and incomplete documentation. These challenges can compromise treatment accuracy and overall patient care. To address these issues, we propose an artificial intelligence (AI)-driven deep learning framework based on convolutional neural networks (CNNs) to automate the classification and archiving of orthodontic diagnostic images.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!