A Layer 3→5 Circuit in Auditory Cortex That Contributes to Pre-pulse Inhibition of the Acoustic Startle Response.

Front Neural Circuits

Department of Psychology, Institute of Neuroscience, University of Oregon, Eugene, OR, United States.

Published: October 2021

While connectivity within sensory cortical circuits has been studied extensively, how these connections contribute to perception and behavior is not well understood. Here we tested the role of a circuit between layers 3 and 5 of auditory cortex in sound detection. We measured sound detection using a common variant of pre-pulse inhibition of the acoustic startle response, in which a silent gap in background noise acts as a cue that attenuates startle. We used the Nr5a-Cre driver line, which we found drove expression in the auditory cortex restricted predominantly to layer 3. Photoactivation of these cells evoked short-latency, highly reliable spiking in downstream layer 5 neurons, and attenuated startle responses similarly to gaps in noise. Photosuppression of these cells did not affect behavioral gap detection. Our data provide the first demonstration that direct activation of auditory cortical neurons is sufficient to attenuate the acoustic startle response, similar to the detection of a sound.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7661757PMC
http://dx.doi.org/10.3389/fncir.2020.553208DOI Listing

Publication Analysis

Top Keywords

auditory cortex
12
acoustic startle
12
startle response
12
pre-pulse inhibition
8
inhibition acoustic
8
sound detection
8
startle
5
layer 3→5
4
3→5 circuit
4
auditory
4

Similar Publications

Intelligibility Sound Therapy Enhances the Ability of Speech-in-Noise Perception and Pre-Perceptual Neurophysiological Response.

Biology (Basel)

December 2024

Department of Otorhinolaryngology, Head and Neck Surgery, Graduate School of Biomedical Sciences, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima 734-8551, Japan.

Aural rehabilitation with hearing aids can decrease the attentional requirements of cognitive resources by amplifying deteriorated-frequency sound in hearing loss patients and improving auditory discrimination ability like speech-in-noise perception. As aural rehabilitation with an intelligible-hearing sound also can be hopeful, the aim of this study was to evaluate the effectiveness of aural rehabilitation with intelligible-hearing sound for hearing loss patients. Adult native Japanese speakers (17 males and 23 females, 68.

View Article and Find Full Text PDF

Parenting: How caregiving experience refines sensory integration.

Curr Biol

January 2025

Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, NY 10461, USA. Electronic address:

Pup odors and vocalizations integrate in the auditory cortex. A new study reveals that odor information is relayed to the auditory cortex by the basal amygdala and the activity of this projection enhances sound responses in females with pup experience.

View Article and Find Full Text PDF

Alterations in brain activity and functional connectivity originating residual inhibition of tinnitus induced by tailor-made notched music training.

Hear Res

October 2024

School of Biomedical Engineering, Tsinghua University, Beijing, China; School of Medicine, Shanghai University, Shanghai, China. Electronic address:

Tinnitus arises from the intricate interplay of multiple, parallel but overlapping networks, involving neuroplastic changes in both auditory and non-auditory activity. Tailor-made notched music training (TMNMT) has emerged as a promising therapeutic approach for tinnitus. Residual inhibition (RI) represents one of the rare interventions capable of temporarily alleviating tinnitus, offering a valuable tool that can be applied to tinnitus research to explore underlying tinnitus mechanisms.

View Article and Find Full Text PDF

Recent work has claimed that most apparently cross-modal responses in sensory cortex are instead caused by the face movements evoked by stimuli of the non-dominant modality. We show that visual stimuli rarely trigger face movements in awake mice; when they occur, such movements do not explain visual responses in auditory cortex; and in simultaneous recordings, face movements drove artifactual cross-modal responses in visual but not auditory cortex. Thus face movements do not broadly explain cross-modal activity across all stimulus modalities.

View Article and Find Full Text PDF

In sensory and mid-level regions of the brain, stimulus information is often topographically organized; functional responses are arranged in maps according to features such as retinal coordinates, auditory pitch, and object animacy or size. However, such organization is typically measured during stimulus input, e.g.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!