Transcranial Magnetic Stimulation (TMS) is a form of non-invasive brain stimulation, used to alter cortical excitability both in research and clinical applications. The and Theta Burst Stimulation (iTBS and cTBS) protocols have been shown to induce opposite after-effects on human cortex excitability. Animal studies have implicated synaptic plasticity mechanisms long-term potentiation (LTP, for iTBS) and depression (LTD, for cTBS). However, the neural basis of TMS effects has not yet been studied in human neuronal cells, in particular at the level of gene expression and synaptogenesis. To investigate responses to TBS in living neurons, we differentiated human SH-SY5Y cells toward a mature neural phenotype, and stimulated them with iTBS, cTBS, or sham (placebo) TBS. Changes in (a) mRNA expression of a set of target genes (previously associated with synaptic plasticity), and (b) morphological parameters of neurite outgrowth following TBS were quantified. We found no general effects of stimulation condition or time on gene expression, though we did observe a significantly enhanced expression of plasticity genes and 24 h after iTBS as compared to sham TBS. This specific effect provides unique support for the widely assumed plasticity mechanisms underlying iTBS effects on human cortex excitability. In addition to this protocol-specific increase in plasticity gene expression 24 h after iTBS stimulation, we establish the feasibility of stimulating living human neuron with TBS, and the importance of moving to more complex human models to understand the underlying plasticity mechanisms of TBS stimulation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7604533PMC
http://dx.doi.org/10.3389/fnmol.2020.528396DOI Listing

Publication Analysis

Top Keywords

plasticity mechanisms
16
gene expression
16
transcranial magnetic
8
itbs ctbs
8
human cortex
8
cortex excitability
8
synaptic plasticity
8
plasticity
7
human
7
expression
6

Similar Publications

Pifithrin-μ sensitizes mTOR-activated liver cancer to sorafenib treatment.

Cell Death Dis

January 2025

Department of Organ Transplantation and Hepatobiliary Surgery, Key Laboratory of Organ Transplantation of Liaoning Province, The First Hospital of China Medical University, Shenyang, China.

TSC2, a suppressor of mTOR, is inactivated in up to 20% of HBV-associated liver cancer. This subtype of liver cancer is associated with aggressive behavior and early recurrence after hepatectomy. Being the first targeted regimen for advanced liver cancer, sorafenib has limited efficacy in HBV-positive patients.

View Article and Find Full Text PDF

The neural basis of the insight memory advantage.

Trends Cogn Sci

January 2025

Department of Psychology, Humboldt University Berlin, Berlin, Germany; Center for Cognitive Neuroscience, Duke University, Durham, NC 27708, USA.

Creative problem solving and memory are inherently intertwined: memory accesses existing knowledge while creativity enhances it. Recent studies show that insights often accompanying creative solutions enhance long-term memory. This insight memory advantage (IMA) is explained by the 'insight as prediction error (PE)' hypothesis which states that insights arise from PEs updating predictive solution models and thereby enhancing memory.

View Article and Find Full Text PDF

Background And Aims: Chemotherapy is one of the treatments of choice for patients with hematological or head and neck neoplasms. However, chemotherapy promotes elevate occurrence of adverse events and many of them directly impact nutritional status and patients' quality of life, which may include a low treatment tolerance. Suggested mechanisms include inflammation and oxidative stress as contributing factors to adverse effects of chemotherapy.

View Article and Find Full Text PDF

Bisphenol A-Induced Cancer-Associated Adipocytes Promotes Breast Carcinogenesis Via CXCL12/AKT Signaling.

Mol Cell Endocrinol

January 2025

Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing 211166, China. Electronic address:

Bisphenol A (BPA), a commonly used plastic additive, is believed to cause obesity. As an environmental endocrine disruptor, BPA is closely associated with the onset and progression of BC. However, the molecular mechanisms underlying the promotion of breast cancer by BPA remain unclear.

View Article and Find Full Text PDF

Volumetric alterations in auditory and visual subcortical nuclei following perinatal deafness in felines.

Neuroimage

January 2025

Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada; Department of Physiology, McGill University, Montreal, Quebec, Canada. Electronic address:

In response to sensory deprivation, the brain adapts to efficiently navigate a modified perceptual environment through a process referred to as compensatory crossmodal plasticity, allowing the remaining senses to repurpose deprived regions and networks. A mechanism that has been proposed to contribute to this plasticity involves adaptations within subcortical nuclei that trigger cascading effects throughout the brain. The current study uses 7T MRI to investigate the effect of perinatal deafness on the volumes of subcortical structures in felines, focusing on key sensory nuclei within the brainstem and thalamus.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!