A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Fully threaded sacroiliac lag screws have higher load to failure when compared to partially threaded screws: A biomechanical study. | LitMetric

The purpose of this study is to compare biomechanical properties of fully and partially threaded iliosacral screws. We hypothesise that fully threaded screws will have a higher yield force, and less deformation than partially threaded screws following axial loading. Twenty sawbone blocks were uniformly divided to simulate vertical sacral fractures. Ten blocks were affixed with fully threaded iliosacral screws in an over-drilled, lag-by-technique fashion whilst the remaining ten were fixed with partially threaded lag-by-design screws. All screws measured 7.3-mm x 145 mm, and were inserted to a 70% of calculated maximal insertional torque, ensuring uniform screw placement throughout across models. Continuous axial loads were applied to 3 constructs of each type to failure to determine baseline characteristics. Five hundred loading cycles of 500 N at 1 Hz were applied to 4 constructs of each type, and then axially loaded to failure. Force displacement curves, elastic, and plastic deformation of each construct was recorded. Fully threaded constructs had a 428% higher yield force, 61% higher stiffness, 125% higher ultimate force, and 66% lower yield deformation (p < 0.05). The average plastic deformation for partially threaded constructs was 336% higher than fully threaded constructs (p = 0.071), the final elastic deflection was 10% higher (p = 0.248), and the average total movement was 21% higher (p = 0.107). We conclude from this biomechanical study that fully threaded, lag-by-technique iliosacral screws can withstand significantly higher axial loads to failure than partially threaded screws. In addition, fully threaded screws trended towards exhibiting a significantly lower plastic deformation following cyclical loading.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7656480PMC
http://dx.doi.org/10.1016/j.jcot.2020.10.035DOI Listing

Publication Analysis

Top Keywords

fully threaded
16
partially threaded
16
threaded screws
12
screws
8
threaded iliosacral
8
iliosacral screws
8
higher yield
8
yield force
8
applied constructs
8
constructs type
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!