Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
COVID-19 can evolve to a severe lung compromise with life-threatening hypoxemia. The mechanisms involved are not fully understood. Their understanding is crucial to improve the outcomes. Initially, past-experience lead to the implementation of standardized protocols assuming this disease would be the same as SARS-CoV. Impulsive use of ventilators in extreme cases ended up in up to 88% fatality. We compare medical and physiological high altitude acute and chronic hypoxia experience with COVID-19 hypoxemia. A pathophysiological analysis is performed based on literature review and histopathological findings. Application of the Tolerance to Hypoxia formula = Hemoglobin/PaCO + 3.01 to COVID-19, enlightens its critical hypoxemia. is defined as progressive alveolar-capillary destruction resulting from the CoV-2 attack to pneumocytes. The adequate interpretation of the histopathological lung biopsy photomicrographs reveals these alterations. The three theoretical pathophysiological stages of progressive hypoxemia (silent hypoxemia, gasping, and death zone) are described. At high altitude, normal low oxygen saturation (SpO) levels (with intact lung tissue and adequate acid-base status) could be considered . At sea level, in COVID-19, the starting at SpO ≤ 90% (comparable to a normal SPO {88-92%} at 3500 m) suddenly evolves to critical hypoxemia. This, as a consequence of progressive + inflammation + overexpressed immunity + HAPE-type edema resulting in pulmonary shunting. The proposed treatment is based on the improvement of the Tolerance to Hypoxia (Hemoglobin factor), oxygen therapy, inflammation reduction, antibiotics, antitussives, rehydration & anticoagulation if required. Understanding the pathophysiology of COVID-19 may assist in this disease's management.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7652053 | PMC |
http://dx.doi.org/10.1007/s12291-020-00935-0 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!